4.i是虛數(shù)單位,復(fù)數(shù)$\frac{2}{1+i}$的共軛復(fù)數(shù)是(  )
A.1+iB.1-iC.2+2iD.2-2i

分析 復(fù)數(shù)分母實(shí)數(shù)化,然后求出復(fù)數(shù)的共軛復(fù)數(shù)即可.

解答 解:復(fù)數(shù)$\frac{2}{1+i}$=$\frac{2(1-i)}{(1+i)(1-i)}$=1-i.
所以所求復(fù)數(shù)的共軛復(fù)數(shù)為:1+i.
故選:A.

點(diǎn)評(píng) 本題考查復(fù)數(shù)的基本運(yùn)算,復(fù)數(shù)的基本概念,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知公差為正數(shù)的等差數(shù)列{an}滿足:a1=1,且2a1,a3-1,a4+1成等比數(shù)列.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)若a2,a5分別是等比數(shù)列{bn}的第1項(xiàng)和第2項(xiàng),求數(shù)列$\left\{{\frac{1}{b_n}}\right\}$的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.已知函數(shù)f(x)=$\left\{\begin{array}{l}{\sqrt{x}-a,x≥1}\\{ln(1-x),x<1}\end{array}\right.$有兩個(gè)零點(diǎn),則實(shí)數(shù)a的取值范圍是[1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.函數(shù)y=2x-1的零點(diǎn)是(  )
A.0B.(0,-1)C.$\frac{1}{2}$D.$(\frac{1}{2},0)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.在等差數(shù)列{an}中,若a2=3,a5=9,則其前6項(xiàng)和S6=( 。
A.12B.24C.36D.48

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.如果正方形ABCD的邊長(zhǎng)為1,那么$\overrightarrow{AC}•\overrightarrow{AB}$等于(  )
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.設(shè)函數(shù)f(x)=|x-a|.
(1)當(dāng)a=2時(shí),求不等式f(x)≤4+|2x-1|的解集;
(2)若A={x|x2-4x≤0},關(guān)于x的不等式f(x)≤a2-2的解集為B,且B⊆A,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.已知函數(shù)y=${2}^{-{x}^{2}-x+2}$(x∈R),對(duì)于任意x恒有f(x)≤f(x0)成立,則x0=$-\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知邊長(zhǎng)為1的正方形ABCD中,以A為始點(diǎn),其余頂點(diǎn)為終點(diǎn)的向量記為$\overrightarrow{{a}_{1}}$,$\overrightarrow{{a}_{2}}$,$\overrightarrow{{a}_{3}}$,以C為始點(diǎn),其余頂點(diǎn)為終點(diǎn)的向量記為$\overrightarrow{_{1}}$,$\overrightarrow{_{2}}$,$\overrightarrow{_{3}}$,若i≠j,m≠n(i,j,m,n∈{1,2,3}),則($\overrightarrow{{a}_{i}}$+$\overrightarrow{{a}_{j}}$)•($\overrightarrow{_{m}}$+$\overrightarrow{_{n}}$)的最小值為( 。
A.-2B.-3C.-4D.-5

查看答案和解析>>

同步練習(xí)冊(cè)答案