6.已知A(0,-1)是焦點(diǎn)在x軸上的橢圓C的一個(gè)頂點(diǎn),F(xiàn)是橢圓C的右焦點(diǎn),直線AF與橢圓C的另一個(gè)交點(diǎn)為B,滿足|AF|=5|FB|.以D(-1,1)為圓心的⊙D與橢圓C交于M,N兩點(diǎn),滿足|AM|=|AN|.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)求圓心D到直線MN的距離d的值.

分析 (1)由題意設(shè)橢圓C:$\frac{{x}^{2}}{{a}^{2}}+{y}^{2}=1$,且F(c,0),由此利用橢圓性質(zhì)能求出橢圓C的標(biāo)準(zhǔn)方程.
(2)設(shè)M(x1,y1),N(x2,y2),且E(x0,y0)為MN的中點(diǎn),利用點(diǎn)差法求出${x_0}=-\frac{3}{4}$,${y_0}=\frac{1}{2}$.由此能求出圓心D到直線MN的距離.

解答 解:(1)由題意設(shè)橢圓C:$\frac{{x}^{2}}{{a}^{2}}+{y}^{2}=1$,且F(c,0),
則由|AF|=5|FB|,知B($\frac{6c}{5},\frac{1}{5}$),代入橢圓C的方程并化簡得2a2=3c2=3(a2-1),即a2=3,
故橢圓C的標(biāo)準(zhǔn)方程:$\frac{{x}^{2}}{3}+{y}^{2}$=1.
(2)設(shè)M(x1,y1),N(x2,y2),且E(x0,y0)為MN的中點(diǎn),
則$\frac{{{x}_{1}}^{2}}{3}+{{y}_{1}}^{2}$=1,$\frac{{{x}_{2}}^{2}}{3}+{{y}_{2}}^{2}$=1.
兩式相減得${{x}_{1}}^{2}-{{x}_{2}}^{2}+3({{y}_{1}}^{2}-{{y}_{2}}^{2})=0$,故2x0+6y0•kMN=0.
∵|AM|=|AN|,故點(diǎn)A在線段MN的中垂線上.又點(diǎn)D在線段MN的中垂線上,
∴A,E,D三點(diǎn)共線,且AD⊥MN.kAD=-2,∴${k_{MN}}=\frac{1}{2}$,從而${y_0}=\frac{{-2{x_0}}}{3}$.
∵$-2={k_{AD}}={k_{AE}}=\frac{{{y_0}+1}}{x_0}$,解得${x_0}=-\frac{3}{4}$,${y_0}=\frac{1}{2}$.
∴圓心D到直線MN的距離d=|DE|=$\frac{\sqrt{5}}{4}$.

點(diǎn)評(píng) 本題考查橢圓標(biāo)準(zhǔn)方程的求法,考查圓心到直線距離的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意點(diǎn)差法的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.函數(shù)y=$\sqrt{\frac{1}{4}-{x}^{2}}$與y=$\frac{1}{2}$cos2πx的圖象交點(diǎn)的個(gè)數(shù)為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=$\frac{1}{3}$x3+ax2-x+b,其中a,b為常數(shù).討論函數(shù)f(x)在區(qū)間(a,+∞)上的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知函數(shù)f(x)在(0,$\frac{π}{2}$)上處處可導(dǎo),若[f(x)-f′(x)]tanx-f(x)<0,則(  )
A.$f(ln\frac{3}{2})sin(ln\frac{3}{2})$一定小于$0.6f(ln\frac{5}{2})sin(ln\frac{5}{2})$
B.$f(ln\frac{3}{2})sin(ln\frac{3}{2})$一定大于$0.6f(ln\frac{5}{2})sin(ln\frac{5}{2})$
C.$f(ln\frac{3}{2})sin(ln\frac{3}{2})$可能大于$0.6f(ln\frac{5}{2})sin(ln\frac{5}{2})$
D.$f(ln\frac{3}{2})sin(ln\frac{3}{2})$可能等于$0.6f(ln\frac{5}{2})sin(ln\frac{5}{2})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知連續(xù)不斷函數(shù)f(x)=sinx+x-$\frac{π}{4}$(0<x<$\frac{π}{2}$),g(x)=cosx-x+$\frac{π}{4}$(0<x<$\frac{π}{2}$).
(1)求證:函數(shù)f(x)在區(qū)間(0,$\frac{π}{2}$)上有且只有一個(gè)零點(diǎn);
(2)現(xiàn)已知函數(shù)g(x)在(0,$\frac{π}{2}$)上有且只有一個(gè)零點(diǎn)(不必證明),記f(x)和g(x)在(0,$\frac{π}{2}$)上的零點(diǎn)分別為x1,x2,求證:x1+x2=$\frac{π}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=Asin(3x+φ)(A>0.x∈(-∞,+∞),0<φ<π)在x=$\frac{π}{12}$時(shí)取得最大值4..
(1)求f(x)的最小正周期;
(2)求f(x)的解析式;
(3)若f($\frac{2}{3}$α+$\frac{π}{12}$)=$\frac{12}{5}$.求tan2α的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.在邊長為3的正方形ABCD內(nèi)隨機(jī)取點(diǎn)P,則點(diǎn)P到正方形各頂點(diǎn)的距離都大于1的概率為1-$\frac{π}{9}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知函數(shù)y=3cos(2x+φ)的圖象關(guān)于點(diǎn)$({\frac{2π}{3},0})$中心對(duì)稱,則|φ|的最小值為$\frac{π}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.設(shè)f(x)=$\left\{\begin{array}{l}{x+2,(x≤0)}\\{(\frac{1}{2})^{x},(x>0)}\end{array}\right.$,則 f[f (-1)]=( 。
A.$\frac{1}{2}$B.1C.2D.4

查看答案和解析>>

同步練習(xí)冊(cè)答案