15.△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,已知a=bcosC+csinB.
(1)求B;
(2)若b=4,求△ABC面積的最大值.

分析 (1)依據(jù)正弦定理化簡(jiǎn)已知可得sinBcosC+cosBsinC=sinBcosC+sinCsinB,可得tanB=1,又0<B<π,即可求B的值.
(2)由余弦定理及基本不等式可得:ac≤16+8$\sqrt{2}$,根據(jù)三角形面積公式即可得解.

解答 解:(1)依據(jù)正弦定理得:sinA=sinBcosC+sinCsinB,…(1分)
∵sinA=sin(B+C),
∴sinBcosC+cosBsinC=sinBcosC+sinCsinB,
由sinC≠0,化簡(jiǎn)可得:tanB=1…(3分)
又0<B<π
∴B=$\frac{π}{4}$.…(5分)
(2)∵b=4,
∴由余弦定理可得:16=a2+c2-2accosB=${a}^{2}+{c}^{2}-\sqrt{2}ac$≥2ac-$\sqrt{2}ac$,解得:ac≤16+8$\sqrt{2}$,
∴${S}_{△ABC}=\frac{1}{2}acsinB$$≤\frac{1}{2}×$(16+8$\sqrt{2}$)×$\frac{\sqrt{2}}{2}$=4$\sqrt{2}+4$…(10分)

點(diǎn)評(píng) 本題主要考查了正弦定理,余弦定理,三角形面積公式,基本不等式的應(yīng)用,考查了三角形內(nèi)角和定理及兩角和的正弦函數(shù)公式的應(yīng)用,熟練掌握和靈活應(yīng)用相關(guān)公式定理是關(guān)鍵,屬于基本知識(shí)的考查.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.求過(guò)兩圓x2+y2-x-y-2=0與x2+y2+4x-8y-8=0的交點(diǎn)和點(diǎn)(3,1)的圓的方程x2+y2-$\frac{13}{3}$x+y+2=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.一個(gè)醫(yī)生已知某種病患者的痊愈率為25%,為實(shí)驗(yàn)一種新藥是否有效,把它給10個(gè)病人服用,且規(guī)定若10個(gè)病人中至少有4個(gè)被治好,則認(rèn)為這種藥有效;反之,則認(rèn)為無(wú)效,試求:
(1)雖新藥有效,且把痊愈率提高到35%,但通過(guò)實(shí)驗(yàn)被否認(rèn)的概率;
(2)新藥完全無(wú)效,但通過(guò)實(shí)驗(yàn)被認(rèn)為有效的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.若函數(shù)f(x)=x3-3x2+1在區(qū)間(a,a+1)上是減函數(shù),則實(shí)數(shù)a的取值范圍為[0,1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.若x,y滿足約束條件$\left\{\begin{array}{l}{x+y≥0}\\{x-y+4≥0}\\{0≤x≤4}\end{array}\right.$,則z=3x-y的最小值是-4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,a1=1,S5=45.
(1)求數(shù)列{an}的通項(xiàng)公式an;
(2)設(shè)數(shù)列{$\frac{1}{{a}_{n}{a}_{n+1}}$}的前n項(xiàng)和為T(mén)n,求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知函數(shù)f(x)=loga(x+1),g(x)=a1-x(其中a>0且a≠1).
(1)求函數(shù)f(x)+g(x)的定義域;
(2)判斷函數(shù)f(x)-g(x)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.命題p:?x∈[0,1],9x-3x-a=0,若命題¬p是假命題,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.條件P:|x-4|>1,條件Q:$\frac{1}{3-x}$>1,則¬P是¬Q的( 。
A.充分非必要條件B.必要非充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

同步練習(xí)冊(cè)答案