4.若△ABC外接圓直徑為2,A=75°,B=45°,則△ABC的面積為$\frac{3+\sqrt{3}}{4}$.

分析 利用圓周角定理得出三個(gè)圓心角的度數(shù),將△ABC分解成三個(gè)小三角形求面積.

解答 解:設(shè)△ABC的外心為O,∵B=45°,A=75°,∴C=180°-A-B=60°.
∴∠AOC=2B=90°,∠BOC=2A=150°,∠AOB=2C=120°,
∵OA=OB=OC=1,
∴S△ABC=S△AOC+S△BOC+S△AOB=$\frac{1}{2}$sin90°+$\frac{1}{2}$sin150°+$\frac{1}{2}$sin120°=$\frac{3+\sqrt{3}}{4}$.
故答案為$\frac{3+\sqrt{3}}{4}$.

點(diǎn)評(píng) 本題考查了三角形外接圓的性質(zhì),面積計(jì)算,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.如圖所示,在二面角α-l-β內(nèi)有一點(diǎn)A,過(guò)A作AB⊥α于B,作AC⊥β于C,如果∠BAC=25°,那么二面角α-l-β是多少度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.在△ABC中,∠A=60°,b=1,且面積為$\sqrt{3}$,求$\frac{a+2b+3c}{sinA+2sinB+3sinC}$=$\frac{2\sqrt{39}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.原始社會(huì)時(shí)期,人們通過(guò)在繩子上打結(jié)來(lái)計(jì)算數(shù)量,即“結(jié)繩計(jì)數(shù)”,當(dāng)時(shí)有位父親,為了準(zhǔn)確記錄孩子的成長(zhǎng)天數(shù),在粗細(xì)不同的繩子上打結(jié),由細(xì)到粗,滿七進(jìn)一,那么孩子已經(jīng)出生多少天?(  )
A.1326B.510C.429D.336

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知三棱錐ABCD中,AB⊥CD,且AB與平面BCD成60°角.當(dāng)$\frac{{S}_{△BCD}}{{S}_{△ACD}}$的值取到最大值時(shí),二面角A-CD-B的大小為(  )
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.如圖所示,拋物線y2=4x的焦點(diǎn)為F,動(dòng)點(diǎn)T(-1,m),過(guò)F作TF的垂線交拋物線于P,Q兩點(diǎn),弦PQ的中點(diǎn)為N.
(1)證明:線段NT平行于x軸(或在x軸上);
(2)若m>0且|NF|=|TF|,求m的值及點(diǎn)N的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知$\overrightarrow{a}$$⊥\overrightarrow$,|$\overrightarrow{a}$|=2,|$\overrightarrow$|=3,且3$\overrightarrow{a}$$+2\overrightarrow$與λ$\overrightarrow{a}$$-\overrightarrow$垂直,則λ等于( 。
A.$\frac{3}{2}$B.-$\frac{3}{2}$C.±$\frac{3}{2}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.證明:$\frac{1-ta{n}^{2}x}{1+ta{n}^{2}x}$=cos2x-sin2x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知命題p:-1≤x≤5,命題q:(x-5)(x+1)<0,則p是q的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

同步練習(xí)冊(cè)答案