產(chǎn)量x(千件) | 2 | 3 | 5 | 6 |
成本y(萬元) | 7 | 8 | 9 | 12 |
分析 (Ⅰ)由表中的數(shù)據(jù)分別計算$\overline{x}$,$\overline{y}$,$\sum_{i=1}^{4}$xiyi,$\sum_{i=1}^{4}$${{x}_{i}}^{2}$,$\stackrel{∧}$,$\stackrel{∧}{a}$,即可寫出線性回歸方程;
(Ⅱ)由線性回歸方程,計算x=10時,$\stackrel{∧}{y}$的值即可.
解答 解:(Ⅰ)由表中的數(shù)據(jù)得$\overline{x}=\frac{2+3+5+6}{4}=4$,(1分)
$\overline{y}=\frac{7+8+9+12}{4}=9$,(2分)
$\sum_{i=1}^4{{x_i}{y_i}}=2×7+3×8+5×9+6×12=155$,(3分)
$\sum_{i=1}^4{x_i^2}={2^2}+{3^2}+{5^2}+{6^2}=74$,(4分)
$\hat b=\frac{{\sum_{i=1}^4{{x_i}{y_i}}-4\bar x\bar y}}{{\sum_{i=1}^4{x_i^2-4{{\bar x}^2}}}}=\frac{155-4×4×9}{{74-4×{4^2}}}=\frac{11}{10}=1.1$,(6分)
$\hat a=\bar y-\hat b\overline{x}=9-1.1×4=4.6$,(7分)
所以所求線性回歸方程為$\hat y=1.1x+4.6$;(8分)
(Ⅱ)由(1)得,當(dāng)x=10時,$\hat y=1.1×10+4.6=15.6$,
即產(chǎn)量為10千件時,成本約為15.6萬元. (10分)
點評 本題考查了求線性回歸方程的應(yīng)用問題,也考查了利用線性回歸方程預(yù)測生產(chǎn)問題,是基礎(chǔ)題目.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (1,0) | B. | (0,1) | C. | (0,-1) | D. | (-1,0) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -6 | B. | 6 | C. | -9 | D. | 9 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com