分析 由基本不等式和題意可得x+y的范圍,變形恒成立的式子由函數的單調性可得.
解答 解:∵x>0,y>0,x+y+3=xy,
∴由基本不等式可得x+y+3=xy≤($\frac{x+y}{2}$)2,
解關于x+y的不等式可得x+y≥6,
∵不等式(x+y)2-a(x+y)+1≥0恒成立,
∴a≤(x+y)+$\frac{1}{x+y}$恒成立,
由函數單調性可得當x+y=6時(x+y)+$\frac{1}{x+y}$取最小值$\frac{37}{6}$,
∴a≤$\frac{37}{6}$,
故答案為:a≤$\frac{37}{6}$.
點評 本題考查基本不等式求最值,涉及函數的單調性,屬中檔題.
科目:高中數學 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | 2 | C. | -$\frac{1}{2}$ | D. | -2 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com