9.如圖所示,矩形ABCD所在的平面垂直圓O所在的平面,AB是圓O的直徑,M是CD上一點(diǎn),且DM=EF,E、F是圓O上的點(diǎn),∠EAF=∠FAB=30°.
(1)求證:DF⊥BF;
(2)求證:平面DAE∥平面MOF.

分析 (1)由已知得AD⊥AB,BF⊥AD,BF⊥AF,從而B(niǎo)F⊥平面ADF,由此能證明DF⊥BF.
(2)由已知推導(dǎo)出DM$\underset{∥}{=}$EF$\underset{∥}{=}$AO,從而四邊形EFMD和四邊形AOMD都是平行四邊形,進(jìn)而DE∥MF,AD∥MO,由此能證明平面DAE∥平面MOF.

解答 證明:(1)∵矩形ABCD所在的平面垂直圓O所在的平面,
∴AD⊥AB,∴AD⊥圓O所在的平面,∴BF⊥AD,
∵AB是圓O的直徑,F(xiàn)是圓O上的點(diǎn),
∴BF⊥AF,
∵AF∩AD=A,∴BF⊥平面ADF,
∵DF?平面ADF,∴DF⊥BF.
(2)∵AB是圓O的直徑,M是CD上一點(diǎn),且DM=EF,E、F是圓O上的點(diǎn),∠EAF=∠FAB=30°,
∴DM=EF=OF=$\frac{1}{2}AB$,
∴DM$\underset{∥}{=}$EF$\underset{∥}{=}$AO,∴四邊形EFMD是平行四邊形,四邊形AOMD是平行四邊形,
∴DE∥MF,AD∥MO,
∵AD∩DE=D,OM∩MF=M,
∴平面DAE∥平面MOF.

點(diǎn)評(píng) 本題考查線線垂直和面面平行的證明,是中檔題,解題時(shí)要認(rèn)真審題,注意空間思維能力的培養(yǎng).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.寫(xiě)出一個(gè)以橢圓$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1和雙曲線$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{12}$=1的離心率為根的方程x2-$\frac{5}{2}$x+1=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.設(shè)x,y∈R,給出四個(gè)點(diǎn)A(2x-1,y),B(1,1),C(x2+1,4),D(x2-1,1)
(1)若$\overrightarrow{AB}$∥$\overrightarrow{CD}$,把y表示成x的函數(shù)y=f(x);
(2)對(duì)數(shù)列{an},設(shè)a1=a2=1,且${4}^{{a}_{n+1}}$=$\frac{2}{3}$f(an)+$\frac{4}{3}$,(n≥2,n∈N*),求$\underset{lim}{n→∞}$an

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.若$\overrightarrow{a}$、$\overrightarrow$、$\overrightarrow{c}$都是單位向量,且$\overrightarrow{p}$=$\overrightarrow{a}$+$\overrightarrow$+$\overrightarrow{c}$,試求|$\overrightarrow{p}$|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.求函數(shù)y=lnx-x3+2x的導(dǎo)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.若方程$\frac{1}{lnx}$-ax=0恰有一個(gè)實(shí)數(shù)根,則實(shí)數(shù)a的取值范圍(0,+∞)∪{-e}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.?dāng)?shù)列{an}中,a1=0,且對(duì)任意k∈N*,a2k-1,a2k,a2k+1成等差數(shù)列,其公差為2k,則Tn=$\frac{{2}^{2}}{{a}_{2}}+\frac{{3}^{2}}{{a}_{3}}+$…+$\frac{4{n}^{2}}{{a}_{2n}}$=4n-$\frac{3}{2}$-$\frac{1}{2n}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.已知x、y為正數(shù),且$\frac{3}{1+x}$+$\frac{3}{1+y}$=1,則xy的最小值為25.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知曲線C1和C2的極坐標(biāo)方程分別為ρ=6$\sqrt{2}$cos(θ-$\frac{π}{4}$)和ρcos(θ+$\frac{π}{4}$)=4$\sqrt{2}$,長(zhǎng)度為1的線段AB的兩端點(diǎn)在曲線C2上,點(diǎn)P在曲線C1上,求△PAB面積的最大值和最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案