分析 運(yùn)用等差數(shù)列的中項(xiàng)性質(zhì),運(yùn)用等比數(shù)列的通項(xiàng)公式和求和公式,計(jì)算即可得到所求值.
解答 解:Sn+1,Sn,Sn+2成等差數(shù)列,可得
2Sn=Sn+1+Sn+2,
若q=1,可得Sn=na1=n,
即有2n=n+1+n+2,方程無(wú)解;
若q≠1,則2•$\frac{{a}_{1}(1-{q}^{n})}{1-q}$=$\frac{{a}_{1}(1-{q}^{n+1})}{1-q}$+$\frac{{a}_{1}(1-{q}^{n+2})}{1-q}$,
可得2qn=qn+1+qn+2,
即為q2+q-2=0,解得q=1(舍去)或q=-2,
則q=-2,an=a1qn-1=(-2)n-1,
Sn=$\frac{{a}_{1}(1-{q}^{n})}{1-q}$=$\frac{1-(-2)^{n}}{3}$.
即有Sn+1=$\frac{1-(-2)^{n+1}}{3}$.
故答案為:-2,(-2)n-1,$\frac{1-(-2)^{n+1}}{3}$.
點(diǎn)評(píng) 本題考查等比數(shù)列的通項(xiàng)公式和求和公式的運(yùn)用,同時(shí)考查等差數(shù)列的中項(xiàng)性質(zhì),考查運(yùn)算能力,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -4 | B. | -$\frac{1}{4}$ | C. | -4或-$\frac{1}{4}$ | D. | -$\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (0,4) | B. | (2,4) | C. | (2,6) | D. | (4,6) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{π}{3}$ | B. | $\frac{2π}{3}$ | C. | $\frac{3π}{2}$ | D. | π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{x^2}{16}+\frac{y^2}{12}=1$ | B. | $\frac{x^2}{12}+\frac{y^2}{16}=1$ | C. | $\frac{x^2}{4}+\frac{y^2}{8}=1$ | D. | $\frac{x^2}{8}+\frac{y^2}{4}=1$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com