17.如圖,在矩形ABCD中,$AB=\sqrt{3}$,BC=1,沿AC將矩形ABCD折疊,連接BD,所得三棱錐D-ABC的正視圖和俯視圖如圖所示,則三棱錐D-ABC的側(cè)視圖的面積為( 。
A.$\frac{3}{4}$B.$\frac{3}{8}$C.$\frac{1}{2}$D.$\frac{{\sqrt{3}}}{4}$

分析 由題意知平面ABD⊥平面BCD,三棱錐A-BCD側(cè)視圖為等腰直角三角形,兩條直角邊分別是過B和D向AC所做的垂線,求出直角邊的長度,即可得側(cè)視圖的面積.

解答 解:由正視圖和俯視圖可知平面ABD⊥平面BCD,
三棱錐A-BCD側(cè)視圖為等腰直角三角形,兩條直角邊分別是過A和C向BD所做的垂線,

由面積相等可得直角邊長為$\frac{1×\sqrt{3}}{\sqrt{{(\sqrt{3})}^{2}{+1}^{2}}}$=$\frac{\sqrt{3}}{2}$,
∴側(cè)視圖面積為S=$\frac{1}{2}$×${(\frac{\sqrt{3}}{2})}^{2}$=$\frac{3}{8}$.
故選:C.

點評 本題考查的知識點是由三視圖,求體積和表面積,根據(jù)已知的三視圖,判斷幾何體的形狀是解答的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.假設(shè)某種設(shè)備使用的年限x(年)與所支出的維修費用y(元)有以下統(tǒng)計資料:
使用年限x23456
維修費用y24567
若由資料知y對x呈線性相關(guān)關(guān)系.試求:
(1)求$\overline x,\overline y$;
(2)線性回歸方程$\hat y=\hat bx+\hat a$;
(3)估計使用10年時,維修費用是多少?
(參考公式:$\hat b=\frac{{\sum_{i=1}^n{({x_i}}-\bar x)({y_i}-\bar y)}}{{\sum_{i=1}^n{{{({x_i}-\bar x)}^2}}}}=\frac{{\sum_{i=1}^n{{x_i}{y_i}}-n\bar x\bar y}}{{\sum_{i=1}^n{{x_i}^2-n{{\bar x}^2}}}}$,$\hat a=\bar y-\hat b\bar x$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知函數(shù)y=f(x)為奇函數(shù)且在R上的單調(diào)遞增,若f(2m)+f(1-m)>0,則實數(shù)m的取值范圍是( 。
A.(-1,2]B.(-1,+∞)C.(-1,4]D.[-1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.(普通中學(xué)做)過拋物線C:y2=8x焦點的直線與C相交于A,B兩點,線段AB的中點為M(3,m),則|AB|=10.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=2cos(x+$\frac{π}{6}$)+2sinx.
(1)求函數(shù)f(x)的單調(diào)遞減區(qū)間;
(2)若f(x)=$\frac{1}{3}$,求cos(2x+$\frac{2π}{3}$)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知點A(1,2,-1),點B與點A關(guān)于平面xoy對稱,則線段AB的長為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.“a=$\frac{1}{2}$”是“直線l1:(a+2)x+(a-2)y=1與直線l2:(a-2)x+(3a-4)y=2相互垂直”的( 。
A.充分而不必要條件B.必要而不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知命題p:“?x∈R,x2≥0”,則¬p:?x∈R,x2<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖,在三棱柱ABC-A1B1C1中,側(cè)棱AA1⊥底面ABC,底面ABC等邊三角形,E,F(xiàn)分別是BC,CC1的中點.求證:
(Ⅰ) EF∥平面A1BC1
(Ⅱ) 平面AEF⊥平面BCC1B1

查看答案和解析>>

同步練習(xí)冊答案