8.拋物線$y=\frac{x^2}{8}$的準(zhǔn)線方程是y=-2.

分析 將拋物線的方程化為標(biāo)準(zhǔn)方程,再由x2=2py的準(zhǔn)線方程y=-$\frac{p}{2}$,即可得到所求方程.

解答 解:拋物線$y=\frac{x^2}{8}$,即為
x2=8y,即有2p=8,
可得-$\frac{p}{2}$=-2.
則準(zhǔn)線方程為y=-2.
故答案為:y=-2.

點評 本題考查拋物線的準(zhǔn)線方程的求法,考查運算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.如圖,矩形ABCD中,點E、F、G分別在邊AB、BC、AD上(點E、F、G與矩形的頂點不重合且矩形的邊AD足夠長).
(1)若AE=1,BE=2,試問:△EFG能否為等邊三角形?若能,求出等邊△EFG的邊長;若不能,說明理由;
(2)若△EFG為等邊三角形,且邊長為2,求AE•BE的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知直線l1:y=k(x-2)-1與圓x2+y2=4只有一個公共點,直線l2:y=ax+1與直線l1垂直,則實數(shù)a=$-\frac{4}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知直線l的方程為x+my-2=0,則直線l( 。
A.恒過點(-2,0)且不垂直x軸B.恒過點(-2,0)且不垂直y軸
C.恒過點(2,0)且不垂直x軸D.恒過點(2,0)且不垂直y軸

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的一條漸近線平行于直線l:x+2y+5=0,雙曲線的一個焦點在直線l上,則雙曲線的方程為( 。
A.$\frac{{3{x^2}}}{25}-\frac{{3{y^2}}}{100}=1$B.$\frac{{3{x^2}}}{100}-\frac{{3{y^2}}}{25}=1$
C.$\frac{x^2}{20}-\frac{y^2}{5}=1$D.$\frac{x^2}{5}-\frac{y^2}{20}=1$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.如圖程序框圖的算法思路源于我國古代數(shù)學(xué)名著《九章算術(shù)》中的“更相減損術(shù)”.執(zhí)行該程序框圖,若輸入a,b分別為6,4,則輸出a的值為(  )
A.0B.2C.4D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.執(zhí)行如圖所示的程序框圖,若輸入x為13,則輸出y的值為( 。
A.10B.5C.4D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.同時擲兩粒骰子(六個面分別標(biāo)有1,2,3,4,5,6個點的正方體),則向上的點數(shù)之和為3的倍數(shù)的概率為$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.函數(shù)y=log${\;}_{\frac{1}{2}}$(2-4x)的定義域用區(qū)間表示為(-∞,$\frac{1}{2}$).

查看答案和解析>>

同步練習(xí)冊答案