20.已知向量$\overrightarrow{a}$=(1,2),$\overrightarrow$=(-2,5),$\overrightarrow{c}$=(x,y),若$\overrightarrow{a}$∥($\overrightarrow$+$\overrightarrow{c}$),$\overrightarrow$⊥$\overrightarrow{c}$,則x+y=$\frac{63}{8}$.

分析 利用向量共線定理、向量垂直與數(shù)量積的關系即可得出.

解答 解:$\overrightarrow+\overrightarrow{c}$=(x-2,y+5).
∵$\overrightarrow{a}$∥($\overrightarrow$+$\overrightarrow{c}$),$\overrightarrow$⊥$\overrightarrow{c}$,
∴y+5-2(x-2)=0,-2x+5y=0.
解得:y=$\frac{9}{4}$,x=$\frac{45}{8}$.
則x+y=$\frac{63}{8}$.
故答案為:$\frac{63}{8}$.

點評 本題考查了向量共線定理、向量垂直與數(shù)量積的關系,考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

10.已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π)的圖象與x軸的一個交點$(-\frac{π}{12},0)$到其相鄰的一條對稱軸的距離為$\frac{π}{4}$.若$f(\frac{π}{12})=\frac{3}{2}$,則函數(shù)f(x)在$[0,\frac{π}{2}]$上的值域為( 。
A.[-1,2]B.$[-\sqrt{3},\sqrt{3}]$C.$[-\frac{{\sqrt{3}}}{2},\sqrt{3}]$D.$[-1,\frac{{\sqrt{3}}}{2}]$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.設數(shù)列{an}滿足an=$\frac{1}{\sqrt{4n-3}}$(n∈N*),bn=a2n+1+a2n+2+…+a22n+1,則bn-bn+1=$\frac{1}{4n+1}$-($\frac{1}{8n+5}$+$\frac{1}{8n+9}$).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.5人從左至右排成一行,甲排在中間的不同方法種數(shù)有( 。
A.12B.24C.36D.120

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.比較x6+1與x4+x2的大小,其中x∈R.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.設數(shù)列{an}的前n項和為Sn,已知a1=1,Sn-Sn-1=$\sqrt{{S}_{n}}$+$\sqrt{{S}_{n-1}}$(n≥2),求an

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.在△ABC中,角A,B,C所對應的邊分別為a,b,c,且sin(A+$\frac{π}{6}$)-cos(B+C)=0.
(I)求角A;
(2)若b=4,sinB=2sinC,求邊a.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.sin80°cos20°-sin10°sin20°=$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.已知向量$\overrightarrow{a}$=(2x+1,3),$\overrightarrow$=(2-x.1),若$\overrightarrow{a}$∥$\overrightarrow$,則實數(shù)x的值等于( 。
A.-$\frac{1}{6}$B.$\frac{1}{6}$C.1D.-1

查看答案和解析>>

同步練習冊答案