6.圓心在原點(diǎn)且被直線3x+4y+15=0截得弦長(zhǎng)為3$\sqrt{3}$的圓的方程${x}^{2}+{y}^{2}=\frac{81}{4}$.

分析 根據(jù)已知,利用${r}^{2}=yqdzuft^{2}+(\frac{l}{2})^{2}$,求出圓的半徑,可得圓的方程.

解答 解:圓心到直線3x+4y+15=0的距離d=$\frac{15}{\sqrt{{3}^{2}+{4}^{2}}}$=3,
若直線3x+4y+15=0被圓截得弦長(zhǎng)l=3$\sqrt{3}$,
則圓的半徑${r}^{2}=qjwkarm^{2}+(\frac{l}{2})^{2}$=$\frac{81}{4}$,
故圓的方程為${x}^{2}+{y}^{2}=\frac{81}{4}$,
故答案為:${x}^{2}+{y}^{2}=\frac{81}{4}$

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是直線與圓的位置關(guān)系,圓的弦長(zhǎng)公式,難度不大,屬于基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.設(shè)P1和P2是雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$上的兩點(diǎn),線段P1P2的中點(diǎn)為M,直線P1P2不經(jīng)過坐標(biāo)原點(diǎn)O.
(1)若直線P1P2和直線OM的斜率都存在且分別為k1和k2,求證:k1k2=$\frac{b^2}{a^2}$;
(2)若雙曲線的焦點(diǎn)分別為${F_1}(-\sqrt{3},0)$、${F_2}(\sqrt{3},0)$,點(diǎn)P1的坐標(biāo)為(2,1),直線OM的斜率為$\frac{3}{2}$,求由四點(diǎn)P1、F1、P2、F2所圍成四邊形P1F1P2F2的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.$若log_a^{\;}\frac{2}{3}<1,(a>0且a≠1)$,則a的取值范圍是(  )
A.($\frac{2}{3}$,1)B.(0,$\frac{2}{3}$)∪(1,+∞)C.(1,+∞)D.(0,$\frac{2}{3}$)∪($\frac{2}{3}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知⊙O1與⊙O1的半徑分別為5cm和3cm,圓心距O1O1=7cm,則兩圓的位置關(guān)系相交.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知各項(xiàng)都不相等的等差數(shù)列{an}的前六項(xiàng)和為60,且a6為a1和a21的等比中項(xiàng).
(1)求數(shù)列{an}的通項(xiàng)公式an及前n項(xiàng)和Sn;
(2)若數(shù)列{bn}滿足bn=n(n+2),求數(shù)列{$\frac{1}{b_n}$}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知橢圓$\frac{x^2}{10-m}+\frac{y^2}{m-2}=1$,長(zhǎng)軸在y軸上,若焦距為8,則m等于(  )
A.4B.8C.14D.38

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知函數(shù)$f(x)=a{x^3}-bx+\frac{c}{x}+2.f(-2)=7,則f(2)$=( 。
A.5B.-7C.3D.-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.對(duì)于數(shù)列{an},稱P(ak)=$\frac{1}{k-1}(|{{a_1}-{a_2}}|+|{{a_2}-{a_3}}|+…+|{{a_{k-1}}-{a_k}}|)$(其中k≥2,k∈N)為數(shù)列{an}的前k項(xiàng)“波動(dòng)均值”.若對(duì)任意的k≥2,k∈N,都有P(ak+1)<P(ak),則稱數(shù)列{an}為“趨穩(wěn)數(shù)列”.
(1)若數(shù)列1,x,2為“趨穩(wěn)數(shù)列”,求x的取值范圍;
(2)已知等差數(shù)列{an}的公差為d,且a1>0,d>0,其前n項(xiàng)和記為Sn,試計(jì)算:Cn2P(S2)+Cn3P(S3)+…+CnnP(Sn)(n≥2,n∈N);
(3)若各項(xiàng)均為正數(shù)的等比數(shù)列{bn}的公比q∈(0,1),求證:{bn}是“趨穩(wěn)數(shù)列”.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.函數(shù)f(x)=$\sqrt{4-{x}^{2}}$+lg(x2-x-2)的定義域?yàn)閧x|-2≤x<1}.

查看答案和解析>>

同步練習(xí)冊(cè)答案