5.已知集合A={-1,0,1,2},B={x|x<2},則A∩B=( 。
A.{-1,0,1}B.{-1,0,2}C.{-1,0}D.{0,1}

分析 根據(jù)交集的定義求出結(jié)果即可.

解答 已知集合A={-1,0,1,2},B={x|x<2},
則A∩B={-1,0,1}.
故選:A.

點評 本題考查求兩個集合的交集的方法,是一道基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.設(shè)Sn為等差數(shù)列{an}的前n項和,證明Sn,S2n-Sn,S3n-S2n成等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.如圖,在平行六面體ABCD-A′B′C′D′中,若$\overrightarrow{AB}=\vec a$,$\overrightarrow{AD}=\overrightarrow b$,$\overrightarrow{AA'}=\overrightarrow c$,則$\overrightarrow{BM}$=( 。
A.$-\frac{1}{2}\overrightarrow a+\frac{1}{2}\overrightarrow b+\overrightarrow c$B.$\frac{1}{2}\overrightarrow a+\frac{1}{2}\overrightarrow b+\overrightarrow c$C.$-\frac{1}{2}\overrightarrow a-\frac{1}{2}\overrightarrow b+\overrightarrow c$D.$\frac{1}{2}\overrightarrow a-\frac{1}{2}\overrightarrow b+\overrightarrow c$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.在直角坐標(biāo)系中,曲線C的參數(shù)方程為,$\left\{\begin{array}{l}{x=\sqrt{5}cosφ}\\{y=\sqrt{15}sinφ}\end{array}\right.$(ϕ為參數(shù)),直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=-\frac{1}{2}t}\\{y=\sqrt{3}+\frac{\sqrt{3}}{2}t}\end{array}\right.$(t為參數(shù)).以原點為極點,x軸的正半軸為極軸建立極坐標(biāo)系,點P的極坐標(biāo)為$(\sqrt{3},\frac{π}{2})$.
(Ⅰ)求點P的直角坐標(biāo),并求曲線C的普通方程;
(Ⅱ)設(shè)直線l與曲線C的兩個交點為A,B,求|PA|+|PB|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.某三棱錐的三視圖如圖所示,則該三棱錐的表面積是( 。
A.2+2$\sqrt{2}$B.2+$\sqrt{2}$C.4+2$\sqrt{2}$D.4+$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.定義在R上的偶函數(shù)f(x)滿足f(x+2)=f(x),當(dāng)x∈[-3,-2]時,f(x)=x2+4x+3,則y=f[f(x)]+1在區(qū)間[-3,3]上的零點個數(shù)為(  )
A.1個B.2個C.4個D.6個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.正弦函數(shù)f(x)=sinx圖象的一條對稱軸是( 。
A.x=0B.$x=\frac{π}{4}$C.$x=\frac{π}{2}$D.x=π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.若圓C:x2+y2+2x-4y+3=0關(guān)于直線2ax+by+6=0對稱,則點(a,b)于圓心C之間的最小距離是( 。
A.$\sqrt{2}$B.2$\sqrt{2}$C.3$\sqrt{2}$D.4$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.在長方體ABCD-A1B1C1D1中,$\overrightarrow{BA}+\overrightarrow{BC}+\overrightarrow{D{D_1}}$=(  )
A.$\overrightarrow{{D_1}{B_1}}$B.$\overrightarrow{{D_1}B}$C.$\overrightarrow{D{B_1}}$D.$\overrightarrow{B{D_1}}$

查看答案和解析>>

同步練習(xí)冊答案