9.(重點(diǎn)中學(xué)做)設(shè)實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}{x-y-2≤0}\\{x+3y-6≥0}\\{y-2≤0}\end{array}\right.$,則 z=x2+y2的取值范圍是( 。
A.[2,2$\sqrt{5}$]B.[10,20]C.[4,20]D.[$\frac{18}{5}$,20]

分析 由約束條件作出平面區(qū)域,數(shù)形結(jié)合得到最優(yōu)解,聯(lián)立方程組求出最優(yōu)解的坐標(biāo),由z=x2+y2的幾何意義得答案.

解答 解:由約束條件$\left\{\begin{array}{l}{x-y-2≤0}\\{x+3y-6≥0}\\{y-2≤0}\end{array}\right.$作出可行域如圖,
由圖可知,可行域內(nèi)的點(diǎn)到原點(diǎn)距離的最小值為d=$\frac{|-6|}{\sqrt{{1}^{2}+{3}^{2}}}=\frac{6\sqrt{10}}{10}=\frac{3\sqrt{10}}{5}$,
聯(lián)立$\left\{\begin{array}{l}{y=2}\\{x-y-2=0}\end{array}\right.$,得A(4,2),
|OA|=$\sqrt{{4}^{2}+{2}^{2}}=2\sqrt{5}$,
∴z=x2+y2的取值范圍是:[$\frac{18}{5},20$].
故選:D.

點(diǎn)評(píng) 本題考查簡(jiǎn)單的線性規(guī)劃,考查了數(shù)形結(jié)合的解題思想方法,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知直三棱柱ABC-A′B′C′中,∠ACB=90°,BE=GE,AG=A′G,F(xiàn)是線段A′C上的點(diǎn),EF∥平面ACB.
(I)求證:BC⊥AF;
(2)若$\frac{CF}{CA′}$=λ,求λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.球O內(nèi)有一個(gè)內(nèi)接正方體,正方體的全面積為24,則球O的體積是4$\sqrt{3}π$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.(1)在正方體ABCD-A1B1C1D1中,求直線A1B和平面A1B1CD所成的角的大。2)已知平面α,β,直線a,且α⊥β,α∩β=AB,a∥α,a⊥AB,試判斷直線α與平面β的位置關(guān)系并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知正四棱錐的底面邊長(zhǎng)為2a,其側(cè)視圖是腰長(zhǎng)為2的等腰三角形(如圖所示),當(dāng)正視圖的面積最大時(shí),該正四棱錐的表面積為( 。
A.8B.8+8$\sqrt{2}$C.8$\sqrt{2}$D.4+8$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.某地區(qū)要建造一條防洪堤,其橫斷面為等腰梯形,腰與底邊所成角為60°(如圖所示),考慮到防洪堤的堅(jiān)固性及石塊用料等因素,設(shè)計(jì)其橫斷面要求面積為9$\sqrt{3}$m2,且髙度不低于$\sqrt{3}$m.問防洪堤橫斷面的腰長(zhǎng)AB為多少時(shí),橫斷面的外周長(zhǎng)AB+BC+CD最小,并求最小外周長(zhǎng):

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.拋物線y2=4x上的點(diǎn)(1,2)到其焦點(diǎn)的距離為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.空間四邊形ABCD的對(duì)角線AC=8,BD=6,M,N分別為AB,CD的中點(diǎn),并且AC與BD所成的角為90°,則MN=(  )
A.10B.6C.8D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.閱讀如圖所示的程序框圖,運(yùn)行相應(yīng)的程序,輸出S的值為( 。
A.8B.32C.48D.384

查看答案和解析>>

同步練習(xí)冊(cè)答案