分析 (1)由f(x)=tanx-sinx,x∈(-$\frac{π}{2}$,$\frac{π}{2}$),能比較f(-$\frac{π}{3}$),f(-$\frac{π}{4}$),f($\frac{π}{3}$)與0的大小關(guān)系.
(2)猜想:當(dāng)x∈(-$\frac{π}{2}$,0)時,f(x)<0;當(dāng)x∈(0,$\frac{π}{2}$)時,f(x)>0;當(dāng)x=0時,f(x)=0.利用導(dǎo)數(shù)性質(zhì)能進行證明.
解答 解:(1)∵f(x)=tanx-sinx,x∈(-$\frac{π}{2}$,$\frac{π}{2}$).
∴f(-$\frac{π}{3}$)<0,
f(-$\frac{π}{4}$)<0,
f($\frac{π}{3}$)>0.
(2)猜想:當(dāng)x∈(-$\frac{π}{2}$,0)時,f(x)<0;
當(dāng)x∈(0,$\frac{π}{2}$)時,f(x)>0;
當(dāng)x=0時,f(x)=0.
證明:∵f(x)=tanx-sinx,
∴${f}^{'}(x)=(\frac{sinx}{cosx})^{'}-(sinx)^{'}$=$\frac{1-co{s}^{3}x}{co{s}^{2}x}$,
∵x∈(-$\frac{π}{2}$,$\frac{π}{2}$),∴cosx∈(0,1],∴f′(x)≥0,
∴f(x)在(-$\frac{π}{2}$,$\frac{π}{2}$)上單調(diào)遞增,f(0)=tan0-sin0=0,
∴當(dāng)x∈(-$\frac{π}{2}$,0)時,f(x)<0;
當(dāng)x∈(0,$\frac{π}{2}$)時,f(x)>0;
當(dāng)x=0時,f(x)=0.
點評 本題考查三角函數(shù)的求法及應(yīng)用,是中檔題,解題時要認真審題,注意導(dǎo)數(shù)性質(zhì)的合理運用.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (0,1) | B. | (1,2) | C. | (2,3) | D. | (3,4) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | p∧q | B. | (¬p)∧(¬q) | C. | p∧(¬q) | D. | (¬p)∧q |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com