10.已知數(shù)列{an}滿足a1=4.a(chǎn)n=4-$\frac{4}{{a}_{n-1}}$(n>1,n∈N+)記bn=$\frac{1}{{a}_{n}-2}$.
(1)試判{bn}是否為等差數(shù)列?說(shuō)明理由.
(2)若an=$\frac{{a}_{n-1}}{4{a}_{n-1}+1}$(n>1,n∈N+),能否判斷數(shù)列{$\frac{1}{{a}_{n}}$}是等差數(shù)列?

分析 (1)計(jì)算b${\;}_{{\;}_{n}}$-bn-1觀察結(jié)果是否為常數(shù)作出判斷;
(2)計(jì)算$\frac{1}{{a}_{n}}$-$\frac{1}{{a}_{n-1}}$觀察結(jié)果是否為常數(shù)作出判斷.

解答 解:(1)∵an=4-$\frac{4}{{a}_{n-1}}$,∴an-2=2-$\frac{4}{{a}_{n-1}}$=$\frac{2({a}_{n-1}-2)}{{a}_{n-1}}$,∴$\frac{1}{{a}_{n}-2}$=$\frac{{a}_{n-1}}{2({a}_{n-1}-2)}$.
∴b${\;}_{{\;}_{n}}$-bn-1=$\frac{1}{{a}_{n}-2}$-$\frac{1}{{a}_{n-1}-2}$=$\frac{{a}_{n-1}}{2({a}_{n-1}-2)}$-$\frac{1}{{a}_{n-1}-2}$=$\frac{{a}_{n-1}-2}{2({a}_{n-1}-2)}$=$\frac{1}{2}$.
∴{bn}是等差數(shù)列.
(2)∵an=$\frac{{a}_{n-1}}{4{a}_{n-1}+1}$,∴$\frac{1}{{a}_{n}}$=$\frac{4{a}_{n-1}+1}{{a}_{n-1}}$,∴$\frac{1}{{a}_{n}}$-$\frac{1}{{a}_{n-1}}$=$\frac{4{a}_{n-1}+1}{{a}_{n-1}}$-$\frac{1}{{a}_{n-1}}$=4.
∴{$\frac{1}{{a}_{n}}$}是等差數(shù)列.

點(diǎn)評(píng) 本題考查了等差數(shù)列的判定,數(shù)列的遞推公式,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知四棱錐S-ABDC各側(cè)面是全等的等腰三角形且腰長(zhǎng)為5cm,頂角45°,求沿棱錐的側(cè)面從A到D的最短路線的長(zhǎng)度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知tanα=a,求$\frac{1+sin2α-cos2α}{1+sin2α+cos2α}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.如圖,設(shè)四棱柱ABCD-A1B1C1D1的底面為菱形,A1C與底面垂直.過(guò)點(diǎn)C作平面與四棱柱的側(cè)棱垂直,且分別交A1A于點(diǎn)E,交BB1于點(diǎn)F,交DD1于點(diǎn)G.
(1)證明:面A1CC1⊥面EFCG;
(2)證明:四邊形EFCG為菱形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.已知π<α<$\frac{3}{2}$π,且sin2α=$\frac{4}{5}$,則sinα+cosα的值等于-$\frac{3\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.(1)“a+c=2b”是“a,b,c成等比數(shù)列”的既不充分也不必要條件;
(2)“$\frac{a}$+$\frac{c}$=2”是“a,b,c成等差數(shù)列”的充分不必要條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.已知函數(shù)f(x)=$\left\{\begin{array}{l}{|{e}^{x+1}-\frac{3}{e}|-a,x≤0}\\{lgx+a,x>0}\end{array}\right.$(a∈R).
①若f(x)有兩個(gè)零點(diǎn),則實(shí)數(shù)a的取值范圍是$\frac{3}{e}$<a≤e-1;
②若f(x)有三個(gè)零點(diǎn),則實(shí)數(shù)a的取值范圍是0<a<$\frac{3}{e}$;
③若y=f(x)的圖象與y=kx-a的圖象有四個(gè)交點(diǎn),則實(shí)數(shù)k的取值范圍是-$\frac{1}{e}$<k<0;
④若y=f(x)的圖象與y=kx-a的圖象有三個(gè)交點(diǎn),則k=-e.
其中正確結(jié)論的序號(hào)是②③.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知四棱錐P-ABCD中,面ABCD為矩形,PA⊥面ABCD,$PA=AD=\frac{1}{2}AB$,M為PB的中點(diǎn),N、S分別為AB、CD上的點(diǎn),且$AN=CS=\frac{1}{4}AB$.
(1)證明:DM⊥SN;
(2)求SN與平面DMN所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.有一名同學(xué)家開(kāi)了小賣(mài)部,他為了研究氣溫對(duì)某種飲料銷售的影響,記錄了2015年7月至12月每月15號(hào)的下午14時(shí)的氣溫和當(dāng)天賣(mài)出的飲料杯數(shù),得到如下資料:
日期7月15日8月15日9月15日10月15日11月15日12月15日
攝氏溫度x(℃)36353024188
飲料杯數(shù)y27292418155
改同學(xué)確定的研究方案是:先從這六組數(shù)據(jù)中選取2組,用剩下的4組數(shù)據(jù)求線性回歸方程,再用被選中的2組數(shù)據(jù)進(jìn)行檢驗(yàn).
(1)求選取2組數(shù)據(jù)恰好是相鄰兩個(gè)月的概率;
(2)若選中的是8月與12月的兩組數(shù)據(jù),根據(jù)剩下的4組數(shù)據(jù),求出y關(guān)于x的線性回歸方程$\widehat{y}$=$\widehat$x+$\widehat{a}$;
(3)若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)誤差不超過(guò)3杯,則認(rèn)為得到的線性回歸方程是理想的,請(qǐng)問(wèn)(2)所得到的線性回歸方程是否理想.
附:對(duì)于一組數(shù)據(jù)(x1,y1),(x2,y2),…,(xn,yn),其回歸直線y=bx+a的斜率和截距的最小二乘估計(jì)分別為$\widehat$=$\frac{\sum_{i=1}^{n})({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\widehat{y}$-$\widehat$$\overline{x}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案