【題目】已知橢圓 =1(a>b>0)的一個(gè)頂點(diǎn)為A(0,1),離心率為 ,過點(diǎn)B(0,﹣2)及左焦點(diǎn)F1的直線交橢圓于C,D兩點(diǎn),右焦點(diǎn)設(shè)為F2
(1)求橢圓的方程;
(2)求△CDF2的面積.

【答案】
(1)解:∵橢圓 =1(a>b>0)的一個(gè)頂點(diǎn)為A(0,1),離心率為 ,

∴b= =1,且 = ,解之得a= ,c=1

可得橢圓的方程為


(2)解:∵左焦點(diǎn)F1(﹣1,0),B(0,﹣2),得F1B直線的斜率為﹣2

∴直線F1B的方程為y=﹣2x﹣2

,化簡得9x2+16x+6=0.

∵△=162﹣4×9×6=40>0,

∴直線與橢圓有兩個(gè)公共點(diǎn),設(shè)為C(x1,y1),D(x2,y2),

∴|CD|= |x1﹣x2|= = =

又∵點(diǎn)F2到直線BF1的距離d= =

∴△CDF2的面積為S= |CD|×d= × =


【解析】(1)根據(jù)橢圓的基本概念和平方關(guān)系,建立關(guān)于a、b、c的方程,解出a= ,b=c=1,從而得到橢圓的方程;(2)求出F1B直線的斜率得直線F1B的方程為y=﹣2x﹣2,與橢圓方程聯(lián)解并結(jié)合根與系數(shù)的關(guān)系算出|x1﹣x2|= ,結(jié)合弦長公式可得|CD|= ,最后利用點(diǎn)到直線的距離公式求出F2到直線BF1的距離d,即可得到△CDF2的面積.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)a∈R,函數(shù)f(x)=x|x﹣a|+2x.
(1)若a=3,求函數(shù)f(x)在區(qū)間[0,4]上的最大值;
(2)若存在a∈(2,4],使得關(guān)于x的方程f(x)=tf(a)有三個(gè)不相等的實(shí)數(shù)解,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】數(shù)列{an}滿足a1=1,a2=3,且an+2=|an+1|﹣an , n∈N* , 記{an}的前n項(xiàng)和為Sn , 則S100=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)P(2,0),及⊙C:x2+y2﹣6x+4y+4=0.
(1)當(dāng)直線l過點(diǎn)P且與圓心C的距離為1時(shí),求直線l的方程;
(2)設(shè)過點(diǎn)P的直線與⊙C交于A、B兩點(diǎn),當(dāng)|AB|=4,求以線段AB為直徑的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)判斷函數(shù)的奇偶性,并說明理由;

(2)證明: 上為增函數(shù);

(3)證明:方程=0沒有負(fù)數(shù)根。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知an=logn+1(n+2)(n∈N*).我們把使乘積a1a2a3…an為整數(shù)的數(shù)n叫做“優(yōu)數(shù)”,則在區(qū)間(1,2004)內(nèi)的所有優(yōu)數(shù)的和為(
A.1024
B.2003
C.2026
D.2048

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一企業(yè)從某生產(chǎn)線上隨機(jī)抽取40件產(chǎn)品,測量這些產(chǎn)品的某項(xiàng)技術(shù)指標(biāo)值,得到如下的頻數(shù)表

頻數(shù)

3

15

17

5

(1)估計(jì)該技術(shù)指標(biāo)值的平均數(shù)(以各組區(qū)間中點(diǎn)值為代表);

(2)若,則該產(chǎn)品不合格,其余合格產(chǎn)品。產(chǎn)生一件產(chǎn)品,若是合格品,可盈利100元,若不是合格品則虧損20元。從該生產(chǎn)線生產(chǎn)的產(chǎn)品中任取2件,記為這2件產(chǎn)品的總利潤,求隨機(jī)變量的分布列和期望值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】己知數(shù)列{log2(an﹣1)}為等差數(shù)列,且a1=3,a2=5.
(1)求證:數(shù)列{an﹣1}是等比數(shù)列;
(2)求 + +…+ 的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知a,b,c分別是△ABC中角A,B,C的對邊,且csinB= bcosC.
(1)求角C的大;
(2)若c=3,sinA=2sinB,求△ABC的面積SABC

查看答案和解析>>

同步練習(xí)冊答案