1.已知函數(shù)f(x)=$\frac{{2}^{x}}{1+{2}^{x}}$,那么f-1($\frac{2}{3}$)=(  )
A.-1B.1C.-2D.2

分析 直接利用反函數(shù)的定義列出方程求解即可.

解答 解:函數(shù)f(x)=$\frac{{2}^{x}}{1+{2}^{x}}$,那么$\frac{2}{3}$=$\frac{{2}^{x}}{1+{2}^{x}}$,解得x=1,
∴f-1($\frac{2}{3}$)=1.
故選:B.

點(diǎn)評(píng) 本題考查反函數(shù)的應(yīng)用,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.求函數(shù)f(x)=$(1+x)^{\frac{x}{tan(x-\frac{π}{4})}}$在(0,2π)內(nèi)的間斷點(diǎn),并判斷其類型.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.已知函數(shù)f(x)=x2+bx+c-2,若關(guān)于x的不等式-2≤f(x)≤2的解集為[x1,x2]∪[x3,x4](x2<x3),則W=(2x4-x3)-(2x1-x2)的最小值為4$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.用斜二側(cè)畫法畫一個(gè)周長(zhǎng)為4的矩形的直觀圖,試求直觀圖面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知$\overrightarrow{a}$,$\overrightarrow$是平面內(nèi)互不相等的兩個(gè)非零向量,且|$\overrightarrow{a}$|=1,$\overrightarrow{a}$-$\overrightarrow$與$\overrightarrow$的夾角為150°,則|$\overrightarrow$|的取值范圍是( 。
A.(0,$\sqrt{3}$]B.[1,$\sqrt{3}$]C.(0,2]D.[$\sqrt{3}$,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.若全稱命題p:“對(duì)?x∈(1,3),x2-2ax-1≤0”為真命題,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.如圖所示,在四面體ABCD中,截面EFGH平行于對(duì)于棱AB和CD,試問(wèn)截面在什么位置時(shí)其截面面積最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.若f(cosx)=-1-2cos3x,求f(sinx).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.有如下幾個(gè)命題:
①函數(shù)$f(x)=3sin(2x-\frac{π}{6})+1$的一個(gè)對(duì)稱軸為$x=\frac{π}{3}$;
②已知點(diǎn)A(2,-3),B(-3,-2),直線l:mx+y-m-1=0與線段AB相交,則直線l的斜率的范圍是$[{-4,\frac{3}{4}}]$;
③若實(shí)數(shù)a+b=2,a,b為正數(shù),則$\frac{1}{a}+\frac{4}$的最小值為$\frac{9}{2}$;
④實(shí)數(shù)x,y滿足3x+4y+6=0,則x2+y2+2x+4y+5的最小值為$\frac{4}{25}$;
⑤已知數(shù)列{an}的前n項(xiàng)和${S_n}={n^2}+3n-1$,則an=2n+1.
其中,所有正確的命題是①③.(寫出所有正確命題的序號(hào))

查看答案和解析>>

同步練習(xí)冊(cè)答案