A. | (0,$\sqrt{3}$] | B. | [1,$\sqrt{3}$] | C. | (0,2] | D. | [$\sqrt{3}$,2] |
分析 如圖所示,設(shè)$\overrightarrow{OA}=\overrightarrow{a}$,$\overrightarrow{OB}=\overrightarrow$,則$\overrightarrow{BA}=\overrightarrow{OA}-\overrightarrow{OB}$=$\overrightarrow{a}-\overrightarrow$.由于|$\overrightarrow{a}$|=1,$\overrightarrow{a}$-$\overrightarrow$與$\overrightarrow$的夾角為150°,可得△OAB中,OA=1,∠OBA=30°.由正弦定理可得:△OAB的外接圓的半徑r=1.則點(diǎn)B為圓上的動(dòng)點(diǎn).由圖可令$\overrightarrow=\overrightarrow{OB}$=(1+cosθ,sinθ),則|$\overrightarrow$|的取值范圍可求.
解答 解:如圖所示,設(shè)$\overrightarrow{OA}=\overrightarrow{a}$,$\overrightarrow{OB}=\overrightarrow$,則$\overrightarrow{BA}=\overrightarrow{OA}-\overrightarrow{OB}$=$\overrightarrow{a}-\overrightarrow$.
由于|$\overrightarrow{a}$|=1,$\overrightarrow{a}$-$\overrightarrow$與$\overrightarrow$的夾角為150°,可得△OAB中,OA=1,∠OBA=30°.
由正弦定理可得:△OAB的外接圓的半徑r=1.則點(diǎn)B為圓上的動(dòng)點(diǎn).
由圖可令$\overrightarrow=\overrightarrow{OB}$=(1+cosθ,sinθ),
則$|\overrightarrow|=\sqrt{(1+cosθ)^{2}+si{n}^{2}θ}$=$\sqrt{2+2cosθ}$.
∴$|\overrightarrow|∈(0,2]$.
故選:C.
點(diǎn)評(píng) 本題考查了數(shù)量積運(yùn)算性質(zhì)、三角函數(shù)的單調(diào)性、正弦定理、三角形外接圓的性質(zhì),考查了數(shù)形結(jié)合的能力、推理能力與計(jì)算能力,屬于有一定難題題目.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -1 | B. | 1 | C. | -2 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 第一象限 | B. | 第一、二象限 | C. | 第一、三象限 | D. | 第二、四象限 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com