17.過點(diǎn)P(-1,1)與拋物線y2=4x有且僅有一個(gè)公共點(diǎn)的直線共有3.

分析 設(shè)直線l的斜率等于k,則當(dāng)k=0時(shí),直線l與拋物線的對(duì)稱軸平行,所以此時(shí)直線與拋物線只有1個(gè)公共點(diǎn).再討論直線與拋物線相切的情況,可得結(jié)論.

解答 解:設(shè)直線l的斜率等于k,直線l的方程為y=kx-k+1,
代入拋物線的方程可得:k2x2+(-2k2+2k-4)x+k2-2k+1=0,
k=0,直線的方程為y=1,滿足題意
k≠0,根據(jù)判別式等于0,求得k有兩個(gè)值,
所以過點(diǎn)P(-1,1)與拋物線y2=4x有且僅有一個(gè)公共點(diǎn)的直線共有3條.
故答案為:3.

點(diǎn)評(píng) 本題主要考查了由直線與拋物線的位置關(guān)系的求解參數(shù)的取值范圍,一般的思路是把位置關(guān)系轉(zhuǎn)化為方程解的問題,體現(xiàn)了轉(zhuǎn)化的思想.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.設(shè)中心在原點(diǎn),焦點(diǎn)在x軸上的雙曲線的漸近線方程是y=±$\frac{3}{4}$x,且過點(diǎn)(4$\sqrt{2}$,-3).
(1)求雙曲線的標(biāo)準(zhǔn)方程;
(2)若直線l過點(diǎn)A(8,3)交雙曲線于P、Q兩點(diǎn),且PQ的中點(diǎn)為A,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.過拋物線x2=-4y的焦點(diǎn)作斜率為1的直線l,若l與拋物線相交于M,N兩點(diǎn),則|MN|的值為( 。
A.8B.16C.64D.8$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.給出下列命題:
①棱柱的側(cè)棱都相等,側(cè)面都是全等的平行四邊形;
②用一個(gè)平面去截棱錐,棱錐底面與截面之間的部分是棱臺(tái);
③存在每個(gè)面都是直角三角形的四面體;
④棱臺(tái)的各條側(cè)棱延長(zhǎng)后交于同一點(diǎn).
其中正確命題的序號(hào)是( 。
A.③④B.①③C.②③D.①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.在三棱錐A-BCD中,底面BCD為邊長(zhǎng)為2的正三角形,頂點(diǎn)A在底面BCD上的射影為△BCD的中心,若E為BC的中點(diǎn),且直線AE與底面BCD所成角的正切值為2$\sqrt{2}$,則三棱錐A-BCD外接球的表面積為( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.拋物線y2=2px(p>0)的焦點(diǎn)F為圓C:x2+y2-4x+3=0的圓心
(1)求拋物線的準(zhǔn)線方程;
(2)直線l與圓C相切,交拋物線A、B兩點(diǎn),求$\overrightarrow{FA}•\overrightarrow{FB}$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知拋物線y2=2px上一點(diǎn)M(1,a)到焦點(diǎn)的距離為3,求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知拋物線C:y2=2px(p>0)的準(zhǔn)線為l,焦點(diǎn)為F,圓M的圓心在x軸的正半軸上,且與y軸相切.過原點(diǎn)作傾斜角為$\frac{π}{3}$的直線n,交l于點(diǎn)A,交圓M于另一點(diǎn)B,且AO=OB=2.
(1)求圓M和拋物線C的方程.
(2)若點(diǎn)P(x,y)(x>0)為拋物線C上的動(dòng)點(diǎn),求$\frac{\overrightarrow{PM}•\overrightarrow{PF}}{\overrightarrow{OP}•\overrightarrow{OF}}$的最小值;
(3)過l上的動(dòng)點(diǎn)Q向圓M作切線,切點(diǎn)為S、T,求證:直線ST恒過一個(gè)定點(diǎn),并求該定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.輸入x=5,運(yùn)行下面的程序之后得到y(tǒng)等于(  )
A.13B.14C.15D.16

查看答案和解析>>

同步練習(xí)冊(cè)答案