8.已知角A是△ABC的一個內(nèi)角,且tanA=-$\frac{5}{4}$,求sinA,cosA的值.

分析 根據(jù)同角的三角函數(shù)的關(guān)系進行求解即可.

解答 解:∵tanA=-$\frac{5}{4}$<0,
∴A是鈍角,則sinA>0,cosA<0,
∵sin2A=$\frac{sin^2A}{sin^2A+cos^2A}$=$\frac{ta{n}^{2}A}{1+ta{n}^{2}A}$=$\frac{\frac{25}{16}}{1+\frac{25}{16}}$=$\frac{25}{41}$.
∴sinA=$\sqrt{\frac{25}{41}}$=$\frac{5\sqrt{41}}{41}$,
cosA=-$\sqrt{1-si{n}^{2}A}$=-$\sqrt{1-\frac{25}{41}}$=-$\sqrt{\frac{16}{41}}$=-$\frac{4\sqrt{41}}{41}$.

點評 本題主要考查同角的三角關(guān)系的應(yīng)用,考查學(xué)生的運算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.函數(shù)$f(x)=\sqrt{{x^2}-2x-8}$的定義域為A,函數(shù)$g(x)=\frac{1}{{\sqrt{1-|{x-a}|}}}$的定義域為B,則使A∩B=∅的實數(shù)a的取值范圍是( 。
A.{a|-1<a<3}B.{a|-2<a<4}C.{a|-2≤a≤4}D.{a|-1≤a≤3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.若關(guān)于x的不等式x2-(a+1)x+a≤0的解集是[-4,3]的子集,則a的取值范圍是[-4,3].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.如圖,在?ABCD中,$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AD}$=$\overrightarrow$,$\overrightarrow{CE}$=$\frac{1}{3}$$\overrightarrow{CB}$,$\overrightarrow{CF}$=$\frac{2}{3}$$\overrightarrow{CD}$.
(1)用$\overrightarrow{a}$,$\overrightarrow$表示$\overrightarrow{EF}$;
(2)若|$\overrightarrow{a}$|=1,|$\overrightarrow$|=4,∠DAB=60°,分別求|$\overrightarrow{EF}$|和$\overrightarrow{AC}$•$\overrightarrow{FE}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知命題p:f(x)=$\frac{x+1}{x+a}$在區(qū)間[2,+∞)上單調(diào)遞減;命題q:g(x)=loga(-x2-x+2)的單調(diào)遞增區(qū)間為[-$\frac{1}{2}$,1).若命題p∧q為真命題.求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.點P(x,y)滿足平面區(qū)域:$\left\{\begin{array}{l}{cosθ≤x≤3cosθ}\\{sinθ≤y≤3sinθ}\end{array}\right.$(θ∈R),點M(x,y)滿足:(x+5)2+(y+5)2=1,則|$\overrightarrow{PM}$|的最小值是(  )
A.5$\sqrt{2}$B.4$\sqrt{2}$-1C.6$\sqrt{2}$-1D.$\sqrt{61}$-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=4x+k•2-x,且f(1)=2.
(1)求k的值;
(2)若f(x)>22-x,求x的取值范圍;
(3)若f(x)>t•2x對任意的x∈(0,+∞)都成立,求t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知圓(x+1)2+y2=16的圓心為B及點A(1,0),點C為圓上任意一點,求線段AC的垂直平分線l與線段CB的交點P的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的圖象如圖所示,f(x)=3sin($\frac{1}{2}$x+$\frac{π}{6}$).

查看答案和解析>>

同步練習(xí)冊答案