4.已知△ABC的三個內(nèi)角A,B,C所對的邊分別為a,b,c,向量$\overrightarrow{m}$=(-b,2c+a),$\overrightarrow{n}$=(cosB,cosA),且$\overrightarrow{m}$∥$\overrightarrow{n}$.
(1)求$\frac{a+c}$的取值范圍;
(2)已知BD是△ABC的中線,若$\overrightarrow{BA}$•$\overrightarrow{BC}$=-2,求|$\overrightarrow{BD}$|的最小值.

分析 (1)運用向量共線的坐標(biāo)表示,結(jié)合三角函數(shù)的恒等變換公式,化簡可得B=120°,再由正弦定理,化簡可得所求范圍;
(2)運用中點的向量表示和向量的數(shù)量積的定義,結(jié)合基本不等式即可得到最小值.

解答 解:(1)向量$\overrightarrow{m}$=(-b,2c+a),$\overrightarrow{n}$=(cosB,cosA),且$\overrightarrow{m}$∥$\overrightarrow{n}$.
即有-bcosA=(2c+a)cosB,
即sinBcosA+sinAcosB=-2sinCcosB,
即有sin(A+B)=sinC=-2sinCcosB,
cosB=-$\frac{1}{2}$,由B為三角形的內(nèi)角,
則B=120°,A+C=60°,
故$\frac{a+c}$=$\frac{sinA+sinC}{sinB}$=$\frac{2sin\frac{A+C}{2}cos\frac{A-C}{2}}{sin120°}$
=$\frac{2•\frac{1}{2}cos(30°-C)}{\frac{\sqrt{3}}{2}}$=$\frac{2}{\sqrt{3}}$cos(30°-C),
由0°<C<60°,可得-30°<30°-C<30°,
即有$\frac{\sqrt{3}}{2}$<cos(30°-C)≤1,
則有$\frac{a+c}$的取值范圍是(1,$\frac{2\sqrt{3}}{3}$];
(2)$\overrightarrow{BD}$=$\frac{1}{2}$($\overrightarrow{BA}$+$\overrightarrow{BC}$),
即有|$\overrightarrow{BD}$|2=$\frac{1}{4}$($\overrightarrow{BA}$2+$\overrightarrow{BC}$2+2$\overrightarrow{BA}$•$\overrightarrow{BC}$)
=$\frac{1}{4}$(c2+a2-4),
由$\overrightarrow{BA}$•$\overrightarrow{BC}$=-2,即cacos120°=-2,
可得ac=4,
故|$\overrightarrow{BD}$|2=$\frac{1}{4}$(c2+a2-4)≥$\frac{1}{4}$(2ac-4)=$\frac{1}{4}$×(8-4)=1.
當(dāng)且僅當(dāng)a=c=2時,取得最小值.
故|$\overrightarrow{BD}$|的最小值為1.

點評 本題考查向量共線和數(shù)量積的定義,考查正弦定理和三角函數(shù)的恒等變換公式的運用,同時考查基本不等式的運用:求最值,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.計算:$\underset{lim}{n→∞}$($\frac{{n}^{3}-1}{3{n}^{2}+n}$-$\frac{{n}^{2}+1}{3n+4}$)=$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.某電子廣告牌連續(xù)播出四個廣告,假設(shè)每個廣告所需的時間互相獨立,且都是整數(shù)分鐘,經(jīng)統(tǒng)計,以往播出100次所需的時間(t)的情況如下:
類別1號廣告2號廣告3號廣告4號廣告
廣告次數(shù)20304010
時間t(分鐘/人)2346
每次隨機播出,若將頻率視為概率.
(Ⅰ)求恰好在第6分鐘后開始播出第3號廣告的概率;
(Ⅱ)用X表示至第4分鐘末已完整播出廣告的次數(shù),求x的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.如圖,在正方體ABCD-A1B1C1D1中,M、N分別為正方體ABCD和AA1B1B的中心,則直線D1M與CN的夾角的余弦值為$\frac{1}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.P是圓x2+y2=1上的動點,作PD⊥y軸,D為垂足,則PD中點的軌跡方程為( 。
A.$\frac{{x}^{2}}{\frac{1}{4}}$+$\frac{{y}^{2}}{1}$=1B.$\frac{{x}^{2}}{1}$+$\frac{{y}^{2}}{\frac{1}{4}}$=1C.$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{1}$=1D.$\frac{{x}^{2}}{1}$+$\frac{{y}^{2}}{4}$=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.若第四屆中國好聲音最后的5人必須與甲、乙、丙3個公司中的某一個公司簽約,要求每個公司至少簽約1人,最多簽約2人,則有簽約方案( 。┓N.
A.30B.60C.90D.180

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知點O(0,0),A(-8,0),B(0,3),Q(3,2),動點P滿足條件|PA|=3|PO|.
(1)求動點P的軌跡C的方程;
(2)設(shè)直線l經(jīng)過點B,直線m經(jīng)過點Q.問是否存在直線l使之被軌跡C截得的線段MN恰被直線m垂直平分?若存在,求出直線l與直線m的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.若角終邊上有一點P(9,-m)且sinα=-$\frac{3}{5}$,則m的值為$\frac{27}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.若一個底面邊長為$\frac{\sqrt{6}}{2}$,側(cè)棱長為$\sqrt{6}$的正六棱柱的所有頂點都在一個球面上,求該球的體積和表面積.

查看答案和解析>>

同步練習(xí)冊答案