分析 化簡$\frac{{n}^{3}-1}{3{n}^{2}+n}$-$\frac{{n}^{2}+1}{3n+4}$=$\frac{3{n}^{3}-3{n}^{2}-4n-4}{9{n}^{3}+15{n}^{2}+4n}$,從而求極限即可.
解答 解:$\frac{{n}^{3}-1}{3{n}^{2}+n}$-$\frac{{n}^{2}+1}{3n+4}$
=$\frac{({n}^{3}-1)(3n+4)-(3{n}^{2}+n)({n}^{2}+1)}{9{n}^{3}+15{n}^{2}+4n}$
=$\frac{3{n}^{3}-3{n}^{2}-4n-4}{9{n}^{3}+15{n}^{2}+4n}$,
故$\underset{lim}{n→∞}$($\frac{{n}^{3}-1}{3{n}^{2}+n}$-$\frac{{n}^{2}+1}{3n+4}$)
=$\underset{lim}{n→∞}$$\frac{3{n}^{3}-3{n}^{2}-4n-4}{9{n}^{3}+15{n}^{2}+4n}$
=$\underset{lim}{n→∞}$$\frac{3-\frac{3}{n}-\frac{4}{{n}^{2}}-\frac{4}{{n}^{3}}}{9+\frac{15}{n}+\frac{4}{{n}^{2}}}$
=$\frac{1}{3}$;
故答案為:$\frac{1}{3}$.
點評 本題考查了分式的化簡與極限的求法應(yīng)用.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{2}$x2-18x+20 | B. | -$\frac{1}{2}$x2+18x-20 | C. | $\frac{1}{2}$x2+2x | D. | $\frac{1}{2}$x2-18x |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com