1.以(1,-2)為圓心且過原點的圓的方程為(x-1)2+(y+2)2=5.

分析 因為要求的圓的圓心知道,且圓經(jīng)過原點,所以圓心到原點的距離就是圓的半徑,然后直接代入圓的標(biāo)準(zhǔn)方程即可.

解答 解:設(shè)圓心是C,因為圓經(jīng)過原點,所以半徑r=$\sqrt{5}$,
所以圓的標(biāo)準(zhǔn)方程為(x-1)2+(y+2)2=5.
故答案為:(x-1)2+(y+2)2=5

點評 本題考查了圓的標(biāo)準(zhǔn)方程,解答此題的關(guān)鍵是求出圓的半徑,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.(理)已知數(shù)列{an}、{bn}的通項公式分布為an=(-1)n-1a-1,bn=(-1)n$\frac{1-2n}{2n+1}$,切對于一切的正整數(shù)n,恒有an<bn成立,則實數(shù)a的取值范圍是$[0,\frac{4}{3})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.拋物線x2=2y上的點到直線x-2y-4=0的距離的最小值是(  )
A.$\frac{\sqrt{5}}{4}$B.$\frac{2\sqrt{5}}{5}$C.$\frac{3\sqrt{5}}{4}$D.$\frac{3\sqrt{5}}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.如圖1,∠ACB=45°,BC=3,過動點A作AD⊥BC,垂足D在線段BC上且異于點B,連接AB,沿AD將△ABD折起,使∠BDC=90°(如圖2所示).記 BD=x,V(x)為三棱錐A-BCD的體積.

(1)求V(x)的表達式;
(2)設(shè)函數(shù)$f(x)=\frac{3}{x}V(x)+2x$,當(dāng)x為何值時,f(x)取得最小值,并求出該最小值;
(3)當(dāng)f(x)取得最小值時,設(shè)點E,M分別為棱BC,AC的中點,試在棱CD上確定一點N,使得EN⊥BM,并求EN與平面BMN所成角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.醫(yī)院用甲、乙兩種原料為手術(shù)后的病人配營養(yǎng)餐.甲種原料每10g含5單位蛋白質(zhì)和10單位鐵質(zhì),售價3元;乙種原料每10g含7單位蛋白質(zhì)和4單位鐵質(zhì),售價2元.若病人每餐至少需要35單位蛋白質(zhì)和40單位鐵質(zhì).試問:應(yīng)如何使用甲、乙原料,才能既滿足營養(yǎng),又使費用最。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知PA垂直于正方形ABCD所在平面,M,N分別是AB,PC的中點,并且PA=AD=1,求$\overrightarrow{MN}$,$\overrightarrow{DC}$的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.下列函數(shù)中,最小值為4的是(  )
A.f(x)=3x+4×3-xB.f(x)=lgx+logx10C.$f(x)=x+\frac{4}{x}$D.$f(x)=cosx+\frac{4}{cosx}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知全集U=R,集合A={x|1<x≤8},B={x|2<x<9},C={x|x≥a}
(1)求A∩B,(∁A)∩B;
(2)如果A∩C≠∅,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.定義在R上的函數(shù)f(x)的圖象關(guān)于點(1,0)對稱,若f(x)共有5個零點,則該函數(shù)f(x)所有零點的和等于5.

查看答案和解析>>

同步練習(xí)冊答案