17.函數(shù)f(x)=$\frac{2x+1}{x+1}$在區(qū)間[1,4]上的最大值為$\frac{9}{5}$最小值為$\frac{3}{2}$.

分析 判斷函數(shù)f(x)在[1,4]為增函數(shù),即可得到f(x)的最值.

解答 解:函數(shù)f(x)=$\frac{2x+1}{x+1}$=2-$\frac{1}{x+1}$,
即有f(x)在[1,4]上遞增,
f(1)取得最小值,且為$\frac{3}{2}$,f(4)取得最大值,且為$\frac{9}{5}$.
故答案為:$\frac{9}{5}$,$\frac{3}{2}$.

點(diǎn)評(píng) 本題考查函數(shù)的最值的求法,注意運(yùn)用函數(shù)的單調(diào)性,考查運(yùn)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.函數(shù)y=1+2cos (3+4x)的最小正周期是$\frac{π}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.直線l在x軸、y軸上的截距的絕對(duì)值相等,且過點(diǎn)P(2,3),則直線l的方程為3x-2y=0,x+y-5=0,x-y+1=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.與雙曲線3x2-y2=3的焦點(diǎn)相同且離心率互為倒數(shù)的橢圓方程為( 。
A.x2+$\frac{{y}^{2}}{3}$=1B.$\frac{{x}^{2}}{3}+{y}^{2}=1$C.$\frac{{x}^{2}}{12}+\frac{{y}^{2}}{16}=1$D.$\frac{{x}^{2}}{16}+\frac{{y}^{2}}{12}=1$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.圓(x-1)2+(y+2)2=20上到直線x-2y=0的距離為$\sqrt{5}$的點(diǎn)的個(gè)數(shù)是3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知全集U={x|x-2≥0或x-1≤0},A={x|x<1或x>3},B={x|x≤1或x>2},求A∩B,A∪B,(∁UA)∩(∁UB),(∁UA)∪(∁UB).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.直線y=0.5x+1被橢圓x2+4y2=4截得的弦長(zhǎng)為$\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.橢圓x2+$\frac{{y}^{2}}{m}$=1的焦點(diǎn)在x軸上,長(zhǎng)軸長(zhǎng)是短軸長(zhǎng)的兩倍,則m的值為( 。
A.$\frac{1}{4}$B.$\frac{1}{2}$C.2D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖,我市體育公園的運(yùn)動(dòng)休閑區(qū)域的平面圖如圖所示,在y軸左側(cè)的運(yùn)動(dòng)區(qū)的邊界曲線段是函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π),x∈[-4,0]時(shí)的圖象且最高點(diǎn)B(-1,$\frac{4\sqrt{3}}{3}$),在y軸右側(cè)的休閑區(qū)的邊界曲線段是以P為圓心,CO為直徑的半圓弧,D、E兩點(diǎn)在半圓弧上,滿足$\widehat{CE}$=$\widehat{DE}$.
(1)求函數(shù)f(x)的解析式;
(2)現(xiàn)要在休閑區(qū)的半圓中進(jìn)行綠化規(guī)劃,在扇形CPD內(nèi)種植草坪,在△DPE和弓形OEFO內(nèi)種植花卉,已知種植花卉的每平方米的成本是種植草坪的每平方米的成本的2倍,設(shè)∠CPD=θ(弧度),則當(dāng)θ為何值時(shí),休閑區(qū)的種植總成本最低.

查看答案和解析>>

同步練習(xí)冊(cè)答案