12.已知?ABCD,則$\overrightarrow{AB}$+$\overrightarrow{AD}$=$\overrightarrow{AC}$,$\overrightarrow{AB}$-$\overrightarrow{AD}$=$\overrightarrow{DB}$.

分析 利用向量的平行四邊形方程與三角形法則即可得出.

解答 解:利用向量的平行四邊形方程與三角形法則可得:
$\overrightarrow{AB}$+$\overrightarrow{AD}$=$\overrightarrow{AC}$,$\overrightarrow{AB}$-$\overrightarrow{AD}$=$\overrightarrow{DB}$.
故答案為:$\overrightarrow{AC}$;$\overrightarrow{DB}$.

點評 本題考查了向量的平行四邊形方程與三角形法則,考查了推理能力與計算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.向量$\overrightarrow{a}$、$\overrightarrow$均為非零向量,且|$\overrightarrow{a}$|=|$\overrightarrow$|,$\overrightarrow{a}$、$\overrightarrow$不是共線向量,求證:($\overrightarrow{a}$-$\overrightarrow$)⊥($\overrightarrow{a}$+$\overrightarrow$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.定義R上的函數(shù)f(x)對任意x、y∈R都有f(x+y)=f(x)+f(y)+k(k為常數(shù)).
(1)判斷k為何值時,函數(shù)f(x)在R上為奇函數(shù),并證明之;
(2)設(shè)k=1,f(x)是R上的增函數(shù),f(4)=7,若不等式f(a•2x+2+3×4x+18)≥3對x∈[1,2]恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知函數(shù)f(x)=a|x|(a>0,a≠1)在區(qū)間(-∞,0)上為增函數(shù),且對任意x∈[m,m+1],不等式f(x+m)≤f2(x)恒成立,則實數(shù)m的取值范圍是( 。
A.m≤-$\frac{3}{2}$B.m≤-3C.m≤-$\frac{2}{3}$D.m≤-$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知sinα+$\sqrt{3}$cosα=2,則tanα=( 。
A.$\sqrt{3}$B.$\sqrt{2}$C.$\frac{\sqrt{2}}{2}$D.$\frac{\sqrt{3}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.如果$\overrightarrow{a}$,$\overrightarrow$分別滿足下列各式,試問$\overrightarrow{a}$,$\overrightarrow$之間有什么關(guān)系?
(1)|$\overrightarrow{a}$+$\overrightarrow$|=|$\overrightarrow{a}$-$\overrightarrow$|;
(2)$\overrightarrow{a}$+$\overrightarrow$=λ($\overrightarrow{a}$-$\overrightarrow$);
(3)$\frac{\overrightarrow{a}}{|\overrightarrow{a}|}$=$\frac{\overrightarrow}{|\overrightarrow|}$;
(4)|$\overrightarrow{a}$+$\overrightarrow$|=|$\overrightarrow{a}$|+|$\overrightarrow$|;
(5)|$\overrightarrow{a}$+$\overrightarrow$|=|$\overrightarrow{a}$|-|$\overrightarrow$|;
(6))|$\overrightarrow{a}$-$\overrightarrow$|=|$\overrightarrow{a}$|+|$\overrightarrow$|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.某幾何體的三視圖如圖所示,則該幾何體的表面積為$4+4\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.不等式$\frac{2-3x}{x-1}>0$的解集為( 。
A.$(-∞,\frac{3}{4})$B.$(-∞,\frac{2}{3})$C.$(-∞,\frac{2}{3})∪(1,+∞)$D.$(\frac{2}{3},1)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.若函數(shù)$f(x)=\left\{\begin{array}{l}\;\;\;\;\;\;\;2{\;^x}-a\;,\;\;\;\;\;\;\;\;\;x≤1\;,\;\;\\({x-a})({x-3a})\;,\;\;\;\;x>1\end{array}\right.$恰有兩個零點,則實數(shù)a的取值范圍是$({\frac{1}{3},\;\;1}]∪({2,\;\;+∞})$.

查看答案和解析>>

同步練習(xí)冊答案