分析 用向量加法的法則和幾何意義知$\overrightarrow{O{P}_{k}}=\overrightarrow{OA}-\frac{k}{n}(\overrightarrow{OA}-\overrightarrow{OB})$,由此代入所求式子化簡即得.
解答 解:由已知得到$\overrightarrow{O{P}_{1}}=\overrightarrow{OA}-\overrightarrow{{P}_{1}A}=\overrightarrow{OA}-\frac{1}{n}(\overrightarrow{OA}-\overrightarrow{OB})$,
$\overrightarrow{O{P}_{2}}=\overrightarrow{OA}-\overrightarrow{{P}_{2}A}=\overrightarrow{OA}-\frac{2}{n}(\overrightarrow{OA}-\overrightarrow{OB})$,
…
$\overrightarrow{O{P}_{n-1}}=\overrightarrow{OA}-\overrightarrow{{P}_{n-1}A}$=$\overrightarrow{OA}-\frac{n-1}{n}(\overrightarrow{OA}-\overrightarrow{OB})$
$\overrightarrow{O{P}_{1}}+\overrightarrow{O{P}_{2}}+…+\overrightarrow{O{P}_{n-1}}$=(n-1)$\overrightarrow{OA}$-$\frac{n-1}{2}(\overrightarrow{OA}-\overrightarrow{OB})$=$\frac{n-1}{2}(\overrightarrow{OA}+\overrightarrow{OB})$=$\frac{n-1}{2}(\overrightarrow{a}+\overrightarrow)$;
故答案為:$\frac{n-1}{2}$.
點評 本題考查向量加法、減法的運算法則和幾何意義,并且運用等差數列求和公式進行計算化簡以及進行合情推理
科目:高中數學 來源: 題型:選擇題
A. | -34 | B. | 34 | C. | 55 | D. | -55 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 2 | B. | 3 | C. | 5 | D. | 10 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 36 | B. | 33 | C. | 30 | D. | 27 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{2\sqrt{3}}{3}$ | B. | $\frac{4\sqrt{3}}{3}$ | C. | $\frac{3\sqrt{3}}{2}$ | D. | $\frac{4\sqrt{2}}{3}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 等邊三角形 | B. | 直角三角形 | C. | 等腰直角三角形 | D. | 鈍角三角形 |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com