分析 (1)由誘導(dǎo)公式和弦化切可得原式=$\frac{-2sinα+cosα}{sinα+cosα}$=$\frac{-2tanα+1}{tanα+1}$,代值計算可得;
(2)變形并弦化切可得原式=$\frac{3si{n}^{2}α+sinαcosα+2co{s}^{2}α}{si{n}^{2}α+co{s}^{2}α}$=$\frac{3ta{n}^{2}α+tanα+2}{ta{n}^{2}α+1}$,代值計算可得.
解答 解:(1)∵tanα=-2,∴$\frac{2sin(α+π)+cos(2π-α)}{cos(α-\frac{π}{2})-sin(\frac{3π}{2}+α)}$
=$\frac{-2sinα+cosα}{sinα+cosα}$=$\frac{-2tanα+1}{tanα+1}$=$\frac{-2×(-2)+1}{-2+1}$=-5;
(2)sin2α+sinαcosα+2=sin2α+sinαcosα+2sin2α+2cos2α
=3sin2α+sinαcosα+2cos2α=$\frac{3si{n}^{2}α+sinαcosα+2co{s}^{2}α}{si{n}^{2}α+co{s}^{2}α}$
=$\frac{3ta{n}^{2}α+tanα+2}{ta{n}^{2}α+1}$=$\frac{3×(-2)^{2}-2+2}{(-2)^{2}+1}$=$\frac{12}{5}$
點評 本題考查同角三角函數(shù)基本關(guān)系,弦化切是解決問題的關(guān)鍵,屬中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3 | B. | 4 | C. | 5 | D. | 6 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com