11.在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c.若角A,B,C成等差數(shù)列,邊a,b,c成等比數(shù)列,則sinA•sinC的值為( 。
A.$\frac{3}{4}$B.$\frac{{\sqrt{3}}}{4}$C.$\frac{1}{2}$D.$\frac{1}{4}$

分析 依題意,可求得B=$\frac{π}{3}$,利用正弦定理即可求得sinAsinC;另解,求得B=$\frac{π}{3}$,利用余弦定理$\frac{1}{2}$=cosB可求得a2+c2-ac=ac,從而可求得答案.

解答 解:∵△ABC中,A,B,C成等差數(shù)列,
∴2B=A+C,又A+B+C=π,
∴B=$\frac{π}{3}$,…(6分)
又b2=ac,由正弦定理得sinAsinC=sin2B=$\frac{3}{4}$ …(12分)
另解:b2=ac,$\frac{1}{2}$=cosB=$\frac{{a}^{2}+{c}^{2}-^{2}}{2ac}$=$\frac{{a}^{2}+{c}^{2}-ac}{2ac}$,…(6分)
由此得a2+c2-ac=ac,得a=c,
所以A=B=C,sinAsinC=$\frac{3}{4}$.
故選:A.…(12分)

點(diǎn)評(píng) 本題考查正弦定理與余弦定理,熟練掌握兩個(gè)定理是靈活解題的關(guān)鍵,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知函數(shù)f(x)=tan($\frac{x}{π}$-1),命題p:?x0∈(0,$\frac{π}{4}$),f(x0)≥0,則( 。
A.P是真命題,¬p:?x∈(0,$\frac{π}{4}$),f(x)≥0B.P是真命題,¬p:?x∈(0,$\frac{π}{4}$),f(x)<0
C.P是假命題,¬p:?x∈(0,$\frac{π}{4}$),f(x)<0D.P是假命題,¬p:?x0∈(0,$\frac{π}{4}$),f(x0)<0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知數(shù)列{an}是各項(xiàng)均為正數(shù)的等比數(shù)列,且a3+a5=4,則a4的最大值為(  )
A.$\sqrt{2}$B.2C.$2\sqrt{2}$D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)是定義域在R上的奇函數(shù),當(dāng)x>0時(shí),f(x)=x2-2x.
(1)求出函數(shù)f(x)在R上的解析式;
(2)寫出函數(shù)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知cos(β-$\frac{π}{4}$)=$\frac{1}{3}$,sin(α+β)=$\frac{4}{5}$,其中0<α<$\frac{π}{2}$<β<π.
(1)求sin2β的值;
(2)求cos(α+$\frac{π}{4}$)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.函數(shù)f(x)=x3+x-8的零點(diǎn)所在的區(qū)間是( 。
A.(0,1)B.(1,2)C.(2,3)D.(3,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知集合A={x|-4≤x≤0},集合B是函數(shù)f(x)=ln(x+2)的定義域.
(Ⅰ)求A∪B;
(Ⅱ)若集合C={x|a<x<a+1},且C∩A=C,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知{an}是等差數(shù)列,公差為2,則a5-a2=6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.設(shè)函數(shù)f(x)=k•ax-a-x(a>0且a≠1)是奇函數(shù).
(1)求常數(shù)k的值;
(2)若$f(1)=\frac{8}{3}$,且函數(shù)g(x)=a2x-a-2x-2mf(x)在區(qū)間[1,+∞)上的最小值為-2,求實(shí)數(shù)m的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案