分析 (1)以D為原點,DA為x軸,DC為y軸,DD1為z軸,建立空間直角坐標系,利用向量法得到A1E與B1F異面.
(2)設(shè)A1E與B1F所成的角為θ,由$\overrightarrow{{A}_{1}E}$=(-1,2,-1),$\overrightarrow{{B}_{1}F}$=(-2,-1,-1),利用向量法能求出A1E與B1F所成的角的余弦值.
解答 解:(1)以D為原點,DA為x軸,DC為y軸,DD1為z軸,建立空間直角坐標系,
設(shè)正方體ABCD-A1B1C1D1中棱長為2,
則E(1,2,1),A1(2,0,2),B1(2,2,2),F(xiàn)(0,1,1),
$\overrightarrow{{A}_{1}E}$=(-1,2,-1),$\overrightarrow{{B}_{1}F}$=(-2,-1,-1),
∴$\overrightarrow{{A}_{1}E}$與$\overrightarrow{{B}_{1}F}$不共線,又A1E與B1F沒有交點,
∴A1E與B1F異面.
(2)設(shè)A1E與B1F所成的角為θ,
∵$\overrightarrow{{A}_{1}E}$=(-1,2,-1),$\overrightarrow{{B}_{1}F}$=(-2,-1,-1),
∴cosθ=$\frac{|\overrightarrow{{A}_{1}E}•\overrightarrow{{B}_{1}F}|}{|\overrightarrow{{A}_{1}E}|•|\overrightarrow{{B}_{1}F}|}$=$\frac{|2-2+1|}{\sqrt{4}•\sqrt{4}}$=$\frac{1}{4}$,
∴A1E與B1F所成的角的余弦值為$\frac{1}{4}$.
點評 本題考查空間中兩條直線的位置關(guān)系的判斷,考查兩直線所成角的余弦值的求法,是基礎(chǔ)題,解題時要認真審題,注意向量法的合理運用.
科目:高中數(shù)學 來源: 題型:選擇題
A. | ?x>1,x+$\frac{1}{x}$≤2 | B. | ?x>1,x+$\frac{1}{x}$≤2 | C. | ?x≤1,x+$\frac{1}{x}$≤2 | D. | ?x≤1,x+$\frac{1}{x}$≤2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | f(x)=$\frac{{x}^{2}-1}{x-1}$與g(x)=x+1 | B. | f(x)=lnex與g(x)=elnx | ||
C. | f(x)=|x|與g(x)=$\sqrt{{x}^{2}}$ | D. | f(x)=$\sqrt{x-1}$•$\sqrt{x+1}$與g(x)=$\sqrt{{x}^{2}-1}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com