分析 由圖可求T,從而利用周期公式可求得ω,又函數(shù)經(jīng)過(-$\frac{π}{3}$,0),結(jié)合范圍-$\frac{π}{2}$<φ<$\frac{π}{2}$可求得φ.
解答 解:∵由圖可得:T=4×($\frac{2π}{3}+\frac{π}{3}$)=4π=$\frac{2π}{ω}$,ω>0,
∴解得ω=$\frac{1}{2}$;
又∵函數(shù)經(jīng)過(-$\frac{π}{3}$,0),
∴$\frac{1}{2}$×(-$\frac{π}{3}$)+φ=kπ,k∈Z.
∴φ=$\frac{π}{6}$+kπ,k∈Z.
又∵-$\frac{π}{2}$<φ<$\frac{π}{2}$,
∴可得:φ=$\frac{π}{6}$.
故答案為:$\frac{1}{2}$,$\frac{π}{6}$.
點(diǎn)評 本題考查由y=Asin(ωx+φ)的部分圖象確定其解析式,求得φ是關(guān)鍵,也是難點(diǎn),考查識圖與運(yùn)算能力,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 30° | B. | 45° | C. | 90° | D. | 135° |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [1,+∞] | B. | [2,+∞] | C. | [$\frac{3}{4}$,2] | D. | [0,3] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ($\frac{1}{4}$,81)∪(81,+∞) | B. | ($\frac{1}{4}$,+∞) | C. | [0,81)∪(81,+∞) | D. | [0,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com