18.計(jì)算
(1)$({{{log}_4}3+{{log}_8}3})\frac{lg2}{lg3}$;
(2)${27^{\frac{2}{3}}}-{2^{{{log}_2}3}}{log_2}\frac{1}{8}+2lg({\sqrt{3+\sqrt{5}}+\sqrt{3-\sqrt{5}}})$.

分析 直接利用對(duì)數(shù)運(yùn)算法則化簡(jiǎn)求解即可.

解答 解:(1)$({log}_{4}3+{log}_{8}3)\frac{lg2}{lg3}$=$({\frac{1}{2}log}_{2}3+{\frac{1}{3}log}_{2}3){log}_{3}2$=$\frac{1}{2}+\frac{1}{3}$=$\frac{5}{6}$
(2)$2{7}^{\frac{2}{3}}-{2}^{{log}_{2}3}lo{g}_{2}\frac{1}{8}+2lg(\sqrt{3+\sqrt{5}}+\sqrt{3-\sqrt{5}})$
=$9-3(-3)+lg{(\sqrt{3+\sqrt{5}}+\sqrt{3-\sqrt{5}})}^{2}$
=18+lg(6+4)
=19.

點(diǎn)評(píng) 本題考查對(duì)數(shù)運(yùn)算法則的應(yīng)用,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知函數(shù)f(x)=5sin(x+$\frac{π}{3}$)-acos2(x+$\frac{π}{3}$)的圖象經(jīng)過(guò)點(diǎn)(-$\frac{π}{3}$,-2)
(1)求a的值
(2)若函數(shù)定義域是R,求函數(shù)的最大值及此時(shí)x的取值集合
(3)若函數(shù)定義域是[-$\frac{π}{2}$,$\frac{π}{2}$],求函數(shù)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知函數(shù)f(x)是定義在R上的偶函數(shù),現(xiàn)已畫(huà)出函數(shù)f(x)在y軸左側(cè)的圖象,如圖所示,請(qǐng)根據(jù)圖象:
(1)畫(huà)出函數(shù)f(x)在y軸右邊的圖象并寫(xiě)出函數(shù)f(x)(x∈R)的解析式.
(2)若函數(shù)g(x)=f(x)-2ax+2,(x∈[1,2])(a∈R為常數(shù)),求函數(shù)g(x)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.如圖為一個(gè)半球挖去一個(gè)圓錐后的幾何體的三視圖,則剩余部分與挖去部分的體積之比為(  )
A.3:1B.2:1C.1:1D.1:2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知$1>{({\frac{1}{2}})^n}>{({\frac{1}{2}})^m}$,則下列關(guān)系正確的是( 。
A.0<n<mB.n<m<0C.0<m<nD.m<n<0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.函數(shù)y=$\left\{\begin{array}{l}{kx+1(-2≤x≤0)}\\{2sin(ωx+φ)(ω>0,0<x≤\frac{8π}{3})}\end{array}\right.$的圖象如圖,則k=$\frac{1}{2}$,ω=$\frac{1}{2}$,φ=$\frac{π}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.己知點(diǎn)P的極坐標(biāo)為(2,$\frac{π}{4}$),直線l過(guò)點(diǎn)P且與極軸所成的角為$\frac{π}{3}$,求直線l的極坐標(biāo)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.在直三棱柱ABC-A1B1C1中,AB+BC=4.BB1=3,∠ABC=90°.當(dāng)三棱柱ABC-A1B1C1的體積最大時(shí).其外接球球的表面積為( 。
A.$\frac{17\sqrt{17}}{6}π$B.17πC.$\frac{17π}{2}$D.$\frac{17π}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.長(zhǎng)、短軸都在坐標(biāo)軸上,直線2x-y=6經(jīng)過(guò)兩頂點(diǎn)的橢圓方程是$\frac{{y}^{2}}{36}+\frac{{x}^{2}}{9}=1$.

查看答案和解析>>

同步練習(xí)冊(cè)答案