1.直線l1:x-y=0與l2:2x-3y+1=0的交點在直線mx+3y+5=0上,則m的值為-8.

分析 先求出x-y=0與2x-3y+1=0的交點坐標,代入直線mx+3y+5=0,求出m的值即可.

解答 解:由$\left\{\begin{array}{l}{x-y=0}\\{2x-3y+1=0}\end{array}\right.$,
解得:$\left\{\begin{array}{l}{x=1}\\{y=1}\end{array}\right.$,
將(1,1)代入mx+3y+5=0
得:m=-8,
故答案為:-8.

點評 本題考察了求直線的交點坐標問題,是一道基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

11.命題“2和3都是素數(shù)”的形式是(  )
A.簡單命題B.p∧qC.p∨qD.?p

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.如果函數(shù)f(x)=x2+ax+2在區(qū)間[2,+∞)上是增函數(shù),那么實數(shù)a的取值范圍是( 。
A.a≤-2B.a≥-2C.a≤-4D.a≥-4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.等比數(shù)列{an}中,${a_1}+{a_2}+{a_3}+…+{a_n}={2^n}-1$,則$\frac{1}{a_1^2}+\frac{1}{a_2^2}+\frac{1}{a_3^2}+…+\frac{1}{a_n^2}$=( 。
A.(2n-1)2B.$\frac{1}{3}({2^n}-1)$C.$\frac{1}{3}(4-\frac{1}{{{4^{n-1}}}})$D.$\frac{1}{3}({4^n}-1)$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.已知等比數(shù)列{an}的前n項和為Sn=$\frac{3}{{2}^{n}}$+m,bn=anan+1,n∈N*
(1)求m的值及{an}的通項公式
(2)求證{bn}為等比數(shù)列,并求b2+b4+b6+…+b20的值
(3)令cn=(2n+1)•an(n∈N*),求{cn}的前n項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知圓C與y軸相切,圓心C(1,-2)
(1)求圓C的方程
(2)是否存在斜率為1的直線l,使以l被圓C截得的弦AB為直徑的圓過原點?若存在,求出直線l的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.圓錐的軸截面是正三角,則它的側(cè)面展開扇形圓心角為π弧度.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.如圖,直三棱柱ABC-A1B1C1,底面三角形ABC中,CA=CB=1,∠BCA=90°,棱AA1=2,M、N分別為A1B1、AB的中點.
(1)求證:平面A1NC∥平面BMC1;(2)求異面直線A1C與C1N所成角的余弦值;
(3)求直線A1N與平面ACC1A1所成角的正弦.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.下列函數(shù)中最小值是4的是(  )
A.y=x+$\frac{4}{x}$B.y=sinx+$\frac{4}{sinx}$
C.y=21+x+21-xD.y=x2+$\frac{1}{{x}^{2}+1}$+3,x≠0

查看答案和解析>>

同步練習冊答案