1.已知α是三角形的內(nèi)角,且$cosα=-\frac{3}{5}$,則tanα等于( 。
A.$-\frac{4}{3}$B.$-\frac{3}{4}$C.$\frac{4}{3}$D.$\frac{3}{4}$

分析 利用同角三角函數(shù)關(guān)系式求解.

解答 解:∵α是三角形的內(nèi)角,且$cosα=-\frac{3}{5}$,
∴sinα=$\sqrt{1-co{s}^{2}α}$=$\sqrt{1-(-\frac{3}{5})^{2}}$=$\frac{4}{5}$,
∴tanα=$\frac{sinα}{cosα}$=$\frac{\frac{4}{5}}{-\frac{3}{5}}$=-$\frac{4}{3}$.
故選:A.

點(diǎn)評 本題考查三角函數(shù)正切值的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意同角三角函數(shù)關(guān)系式的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知△ABC中,A,B,C所對的邊分別為a,b,c,且a>c>b,且a,c,b成等差數(shù)列,|AB|=2,求點(diǎn)C的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.在二項(xiàng)式($\frac{1}{x}$+x)n的展開式中,所有奇數(shù)項(xiàng)系數(shù)和為64,求展開式中系數(shù)最大的項(xiàng)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知四面體ABCD的頂點(diǎn)都在的球O的球面上,且AB=6,BC=5$\sqrt{3}$,AD=8,BD=10,CD=5,平面ABD垂直平面BCD,則球O的體積為$\frac{500π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.若f(x)=ex,則f(x)在點(diǎn)(0,1)處的切線方程為y=x+1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=kx2+(3+k)x+3,其中k為常數(shù)
(Ⅰ)若f(x)在區(qū)間[-2,2]上是增函數(shù),求實(shí)數(shù)k的取值范圍;
(Ⅱ) 是否存在非正實(shí)數(shù)k使得函數(shù)f(x)在[-1,4]上的最大值是4?若存在,求出k的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=$\frac{{\sqrt{3}}}{2}sin2x-{cos^2}x-\frac{1}{2}$,x∈R.
(1)求函數(shù)f(x)的最大值和最小正周期;
(2)設(shè)△ABC的內(nèi)角A,B,C的對邊分別a,b,c且c=3,f(C)=0,若sinB=2sinA,求:邊a,邊b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.若點(diǎn)M是△ABC所在平面內(nèi)一點(diǎn),且滿足$\overrightarrow{AM}=\frac{3}{4}\overrightarrow{AB}+\frac{1}{4}\overrightarrow{AC}$,則△ABM與△ABC的面積之比等于(  )
A.$\frac{3}{4}$B.$\frac{1}{2}$C.$\frac{1}{3}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.下列通項(xiàng)公式表示的數(shù)列為等差數(shù)列的是( 。
A.an=$\frac{n}{n+1}$B.an=n2-1C.an=5n+(-1)nD.an=3n-1

查看答案和解析>>

同步練習(xí)冊答案