分析 法一:利用絕對(duì)值不等式的性質(zhì):|a|+|b|≥|a-b|(當(dāng)且僅當(dāng)a與b同號(hào)取等號(hào)),求出原不等式左邊的最小值,讓a大于求出的最小值,即可得到滿足題意的實(shí)數(shù)a的取值范圍.
法二:由絕對(duì)值的幾何意義知|x-4|+|x-3|表示實(shí)數(shù)軸上的點(diǎn)到-3和到4兩點(diǎn)的距離之和,故范圍可求出,由題意a大于|x-4|+|x-3|的最小值即可.
解答 解:法一:∵|x-4|+|x-3|≥|x-4+3-x|=1,
∴|x-4|+|x-3|的最小值為1,
又不等式|x-4|+|x-3|≤a的解集不是空集,
∴a>1.
法二:由絕對(duì)值的幾何意義知|x-4|+|x-3|表示實(shí)數(shù)軸上的點(diǎn)到-3和到4兩點(diǎn)的距離之和,
故|x-4|+|x-3|≥1,
由題意,不等式|x-4|+|x13|<a在實(shí)數(shù)集上的解不為空集,
只要a>(|x-4|+|x13|)min即可,
即a>1,
故答案為:(1,+∞)
點(diǎn)評(píng) 本題考查絕對(duì)值不等式的性質(zhì)及其解法,這類題目是高考的熱點(diǎn),難度不是很大,要注意不等號(hào)進(jìn)行放縮的方向.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 命題“若x2=1,則x=1”的否命題為:“若x2=1,則x≠1” | |
B. | 命題“?x∈R,使得x2+x+1<0”的否定是:“?x∈R 均有x2+x+1<0” | |
C. | 在△ABC中,“A>B”是“sinA>sinB”的充要條件 | |
D. | “x≠2或y≠1”是“x+y≠3”既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
喜愛打籃球 | 不喜愛打籃球 | 合計(jì) | |
男生 | 5 | ||
女生 | 10 | ||
合計(jì) | 50 |
P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | 1 | C. | 0 | D. | -1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com