分析 通過(guò)令f(x)=x3-3x2+4(x≥0),并對(duì)其求導(dǎo)判斷函數(shù)f(x)的單調(diào)性,進(jìn)而求出最小值,整理即得結(jié)論.
解答 證明:令f(x)=x3-3x2+4(x≥0),
則f′(x)=3x2-6x=3x(x-2),
令f′(x)=0可知x=0或x=2,
故在區(qū)間[0,2]上f′(x)<0,即函數(shù)f(x)=x3-3x2+4單調(diào)遞減,
在區(qū)間[2,+∞)上f′(x)>0,即函數(shù)f(x)=x3-3x2+4單調(diào)遞增,
于是函數(shù)f(x)=x3-3x2+4在區(qū)間[0,+∞)上的最小值f(x)min=f(2)=23-3×22+4=0,
故當(dāng)x≥0時(shí)f(x)≥0,即x3-3x2+4≥0,x3+4≥3x2.
點(diǎn)評(píng) 本題考查函數(shù)最值及其幾何意義,考查利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性,注意解題方法的積累,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2A44 | B. | A44•A33 | C. | A44•A44 | D. | A88 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | \frac{π}{4} | B. | \frac{π}{2} | C. | \frac{2π}{3} | D. | \frac{3π}{4} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com