11.設(shè)函數(shù)f(x)=x2+(a-2)x-1的單調(diào)遞增區(qū)間為[2,+∞),則實(shí)數(shù)a的取值集合為[-2,+∞).

分析 根據(jù)一元二次函數(shù)單調(diào)性的性質(zhì)進(jìn)行求解即可.

解答 解:若f(x)=x2+(a-2)x-1的單調(diào)遞增區(qū)間為[2,+∞),
則滿足對稱軸x=$-\frac{a-2}{2}$≤2,
即a≥-2,
即實(shí)數(shù)a的取值集合為[-2,+∞),
故答案為:[-2,+∞).

點(diǎn)評 本題主要考查一元二次函數(shù)單調(diào)性的應(yīng)用,確定對稱軸和區(qū)間的關(guān)系是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{3}^{-x},}&{x≤0}\\{\sqrt{x},}&{x>0}\end{array}\right.$,若函數(shù)g(x)=f(x)-x-k有且僅有兩個(gè)零點(diǎn),則實(shí)數(shù)k的取值范圍是(0,$\frac{1}{4}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=lg|x|.
(1)判斷f(x)的奇偶性;
(2)畫出f(x)的圖象草圖;
(3)利用定義證明函數(shù)f(x)在(-∞,0)上是減函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.如圖,ABCD是矩形,其中AB=2AD=4,E為DC上一點(diǎn),使得D點(diǎn)射影落在AE上.

(1)若E為CD中點(diǎn),求證:AD⊥平面BDE;
(2)設(shè)∠DAE=θ,當(dāng)DB最短時(shí),求θ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.設(shè)f(x)=3x+3x-8,現(xiàn)用二分法求方程3x+3x-8=0在區(qū)間(1,2)內(nèi)的近似解的,計(jì)算得f(1)<0,f(1.25)<0,f(1.5)>0,f(2)>0,則方程的根落在的區(qū)間( 。
A.(1,1.25)B.(1.25,1.5)C.(1.5,2)D.不能確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.如圖,在四棱錐P-ABCD中,PD⊥平面ABCD;四邊形ABCD是菱形,經(jīng)過AC作與PD平行的平面交PB與點(diǎn)E,ABCD的兩對角線交點(diǎn)為F.求證:AC⊥DE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知函數(shù)f(x)=$\frac{{x}^{2}}{1+{x}^{2}}$,那么f(1)+f(2)+f($\frac{1}{2}$)+f(3)+f($\frac{1}{3}$)+…+f(2015)+f($\frac{1}{2015}$)等于2014.5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=$\frac{1+lnx}{x}$.
(1)求函數(shù)f(x)的單調(diào)區(qū)間和極值;
(2)若對任意的x∈(0,+∞),不等式lnx≤kx2-1恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.若f(x)=2x2-lnx在定義域的子區(qū)間(a-1,a+1)上有極值,則實(shí)數(shù)a的取值范圍是[1,$\frac{3}{2}$).

查看答案和解析>>

同步練習(xí)冊答案