4.當(dāng)n∈N,且n>1時(shí),求證:2<(1+$\frac{1}{n}$)n<3.

分析 由二項(xiàng)式定理知:(1+$\frac{1}{n}$)n=Cn0+Cn1×$\frac{1}{n}$+Cn2($\frac{1}{n}$)2+…+Cnn($\frac{1}{n}$)n=1+1+Cn2×$\frac{1}{{n}^{2}}$+Cn3×$\frac{1}{{n}^{3}}$+…+Cnn×$\frac{1}{{n}^{n}}$
由此知2<(1+$\frac{1}{n}$)n<3.

解答 證明:(1+$\frac{1}{n}$)n=Cn0+Cn1×$\frac{1}{n}$+Cn2($\frac{1}{n}$)2+…+Cnn($\frac{1}{n}$)n
=1+1+Cn2×$\frac{1}{{n}^{2}}$+Cn3×$\frac{1}{{n}^{3}}$+…+Cnn×$\frac{1}{{n}^{n}}$
=2+$\frac{1}{2!}$×$\frac{n(n-1)}{{n}^{2}}$+…+$\frac{1}{n!}$×$\frac{n(n-1)…•2•1}{{n}^{n}}$
<2+$\frac{1}{2!}$+…+$\frac{1}{n!}$<2+$\frac{1}{2}$+$\frac{1}{{2}^{2}}$+…+$\frac{1}{{2}^{n-1}}$
=2+$\frac{\frac{1}{2}[1-(\frac{1}{2})^{n-1}]}{1-\frac{1}{2}}$=3-($\frac{1}{2}$)n-1<3.
顯然(1+$\frac{1}{n}$)n=1+1+Cn2×$\frac{1}{{n}^{2}}$+Cn3×$\frac{1}{{n}^{3}}$+…+Cnn×$\frac{1}{{n}^{n}}$>2.
所以2<(1+$\frac{1}{n}$)n<3.

點(diǎn)評(píng) 本題考查不等式的性質(zhì)和應(yīng)用,解題時(shí)要注意二項(xiàng)式定理和放縮法的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.f(x)=$\sqrt{1-{2^x}}$+$\frac{1}{{\sqrt{x+3}}}$的定義域?yàn)椋ā 。?table class="qanwser">A.(-∞,-3)∪(-3,0]B.(-∞,-3)∪(-3,1]C.(-3,0]D.(-3,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知$\overrightarrow{a}$、$\overrightarrow$、$\overrightarrow{c}$、$\overrightarrowgessq1w$為非零向量,且$\overrightarrow{a}$+$\overrightarrow$=$\overrightarrow{c}$,$\overrightarrow{a}$-$\overrightarrow$=$\overrightarrowgckt6mp$,則下列命題正確的個(gè)數(shù)為( 。
①若|$\overrightarrow{a}$|=|$\overrightarrow$|,則$\overrightarrow{c}$•$\overrightarrowsgp6xa3$=0;②若$\overrightarrow{c}$•$\overrightarrow0mxstw3$=0,則|$\overrightarrow{a}$|=|$\overrightarrow$|;③若|$\overrightarrow{c}$|=|$\overrightarrowpsbgjeu$|,則$\overrightarrow{a}$•$\overrightarrow$=0;④若$\overrightarrow{a}$•$\overrightarrow$=0,則|$\overrightarrow{c}$|=|$\overrightarrowxthjmx6$|.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.-150°的弧度數(shù)是( 。
A.-$\frac{π}{3}$B.-$\frac{5π}{6}$C.-$\frac{2π}{3}$D.$\frac{π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.在三棱錐P-ABC中,PA⊥平面ABC,△ABC是直角三角形,AC⊥CB,PA=2,CA=2$\sqrt{3}$,CB=2,E為BC的中點(diǎn),CF⊥AB于點(diǎn)F,CF交AE于點(diǎn)M.
(1)求二面角P-CF-B的余弦值;
(2)求點(diǎn)M到平面PBC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.設(shè)△ABC的角A,B,C所對(duì)邊的長(zhǎng)分別為a,b,c,且2bcosA=acosC+ccosA.
(1)求角A的大;
(2)若a=2,b+c=4,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.正四面體的棱長(zhǎng)為a,它的頂點(diǎn)都在同一球面上,則這個(gè)球的表面積是( 。
A.3πa2B.2πa2C.$\frac{3π{a}^{2}}{2}$D.$\frac{π{a}^{2}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{2}}{2}$,其左、右焦點(diǎn)分別為F1、F2,以原點(diǎn)O為圓心,橢圓的短半軸長(zhǎng)為半徑的圓與直線x-y+$\sqrt{2}$=0相切.
(1)求橢圓C的方程.
(2)過點(diǎn)F2作不與x軸重合的直線交橢圓于M,N兩個(gè)不同的點(diǎn),求△0MN面積S的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.y=$\root{3}{{x}^{2}}$的導(dǎo)數(shù)是(  )
A.3x2B.$\frac{1}{3}$x2C.-$\frac{2}{3}$x${\;}^{-\frac{1}{3}}$D.$\frac{2}{3}$x${\;}^{-\frac{1}{3}}$

查看答案和解析>>

同步練習(xí)冊(cè)答案