11.已知α為第二象限的角,sinα=$\frac{3}{5}$,則$tan\frac{α}{2}$=3,tan2α=$-\frac{24}{7}$.

分析 先由已知求得$\frac{α}{2}$的范圍,求出tanα的值,再由正切函數(shù)的二倍角公式可得答案.

解答 解:∵α為第二象限的角,
∴可得:$\frac{α}{2}$∈(kπ$+\frac{π}{4}$,k$π+\frac{π}{2}$),k∈Z,
∴tan$\frac{α}{2}$>0,
又∵sinα=$\frac{3}{5}$,∴cosα=-$\frac{4}{5}$,tanα=$\frac{sinα}{cosα}$=-$\frac{3}{4}$,
∴tanα=-$\frac{3}{4}$=$\frac{2tan\frac{α}{2}}{1-ta{n}^{2}\frac{α}{2}}$,整理可得:3tan2$\frac{α}{2}$-8tan$\frac{α}{2}$-3=0,解得:tan$\frac{α}{2}$=3或-$\frac{1}{3}$(舍去).
tan2α=$\frac{2tanα}{1-ta{n}^{2}α}$=$-\frac{24}{7}$.
故答案為:3,$-\frac{24}{7}$.

點(diǎn)評(píng) 本小題主要考查三角函數(shù)值符號(hào)的判斷、同角三角函數(shù)關(guān)系、和角的正切公式,同時(shí)考查了基本運(yùn)算能力及等價(jià)變換的解題技能.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.若集合M⊆{1,2,3},則這樣的集合M共有8個(gè).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.設(shè)函數(shù)f(x)=|cos2x|-2sin2x+m,x∈[0,π],其中m為常數(shù);
①當(dāng)$f(\frac{5π}{12})=0$時(shí),則實(shí)數(shù)m的值是1
②當(dāng)f(x)恰有兩個(gè)不同的零點(diǎn)時(shí),則實(shí)數(shù)m的取值范圍是-1≤m<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=$\frac{\sqrt{2}}{2}$sin(2ωx+$\frac{π}{4}$)+$\frac{1}{2}$(ω>0)的最小正周期為π.
(1)求ω的值;
(2)將函數(shù)y=f(x)的圖象上各點(diǎn)的橫坐標(biāo)縮短到原來的$\frac{1}{2}$,縱坐標(biāo)不變,得到函數(shù)y=g(x)的圖象.①求函數(shù)y=g(x)的單凋區(qū)間;②求函數(shù)y=g(x)在區(qū)間[0,$\frac{π}{16}$]上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.某幾何體的三視圖如圖所示,其中俯視圖為半徑為2的四分之一個(gè)圓弧,則該幾何體的體積為8-2π,表面積為16.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知$\overrightarrow{O{A}_{1}}$=(0,1),$\overrightarrow{O{A}_{2}}$=(0,5),$\overline{{A}_{n-1}{A}_{n}}$=2$\overrightarrow{{A}_{n}{A}_{n+1}}$(n≥2,n∈N*),則$\overrightarrow{{A}_{7}{A}_{8}}$等于(0,$\frac{1}{16}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.有6人排隊(duì)購買0.5元1份的《南昌晚報(bào)》,其中有3個(gè)人各持有0.5元硬幣一枚,另三人各持有1元硬幣一枚,假若賣報(bào)人預(yù)先沒有備好零錢,則這6人排隊(duì)買報(bào)恰好不會(huì)出現(xiàn)沒有零錢找補(bǔ)的情況的概率是$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.計(jì)算:($\frac{27}{8}$)${\;}^{-\frac{1}{3}}$+log2(log216)=$\frac{8}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.在?ABCD中,若A(-2,0),B(6,8),C(8,0),求D點(diǎn)的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案