4.若函數(shù)f(x)的定義域?yàn)镽,且對(duì)-切實(shí)數(shù)x,都有f(-x)=f(x),且f(2+x)=f(2-x),試證明f(x)為周期函數(shù).并求出它的一個(gè)周期.

分析 根據(jù)已知可f(-x)=f(x),且f(2+x)=f(2-x)恒成立,可得f(4+x)=f(x),進(jìn)而得到答案.

解答 證明:函數(shù)f(x)的定義域?yàn)镽,且對(duì)-切實(shí)數(shù)x,都有f(-x)=f(x),且f(2+x)=f(2-x),
∴f(4+x)=f[2+(2+x)]=f[2-(2+x)]=f(-x)=f(x),
即f(x)為周期函數(shù).
4即為函數(shù)的一個(gè)周期.

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是函數(shù)的奇偶性,函數(shù)的對(duì)稱性,函數(shù)的周期性,正確理解函數(shù)周期性的定義,是解答的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.設(shè)函數(shù)f(x)=x2-ln(x+a)+b,g(x)=x3
(1)若函數(shù)f(x)在點(diǎn)(0,f(0))處的切線方程是x+y=0,求實(shí)數(shù)a,b的值;
(Ⅱ)在(Ⅰ)的條件下,當(dāng)x∈(0,+∞)時(shí),求證:f(x)<g(x);
(Ⅲ)證明:對(duì)于任意的正整數(shù)n,不等式1+$\frac{1}{{e}^{4}}$+$\frac{1}{{e}^{18}}$+…+$\frac{1}{{e}^{(n-1{)n}^{2}}}$<$\frac{n(n+3)}{2}$成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知直線y=x+m與拋物線y2=4x的焦點(diǎn)的距離為2,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知a<b,比較1-a3與1-b3的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.求函數(shù)y=cos($\frac{π}{12}$-x)-cos($\frac{5π}{12}$+x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.設(shè)f(x)=f′(1)+$\sqrt{x}$.則f(4)=$\frac{5}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.已知向量$\overrightarrow{a}$=(2,一3),$\overrightarrow$=(1,2),$\overrightarrow{p}$=(9,4),若$\overrightarrow{p}$=m$\overrightarrow{a}$+n$\overrightarrow$,則m+n=7.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.已知函數(shù)f(x)=|x2-4x+3|-m有四個(gè)零點(diǎn),則實(shí)數(shù)m的取值范圍是(0,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.為了解某地臍橙種植情況,調(diào)研小組在該地某臍橙種植園中隨機(jī)抽出30棵,每棵掛果情況編成如圖所示的莖葉圖(單位:個(gè)):若掛果在175個(gè)以上(包括175)定義為“高產(chǎn)”,掛果在175個(gè)以下(不包括175)定義為“非高產(chǎn)”.
(1)如果用分層抽樣的方法從“高產(chǎn)”和“非高產(chǎn)”中抽取5棵,再?gòu)倪@5棵中選2棵,那么至少有一棵是“高產(chǎn)”的概率是多少?
(2)用樣本估計(jì)總體,若從該地所有臍橙果樹(有較多果樹)中選3棵,用ξ表示所選3棵中“高產(chǎn)”的個(gè)數(shù),試寫出ξ的分布列,并求ξ的數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊(cè)答案