19.用五點(diǎn)法畫(huà)出y=$\frac{1}{2}$sin(2x-$\frac{π}{3}$)在一個(gè)周期內(nèi)的圖象.

分析 直接根據(jù)五點(diǎn)法畫(huà)圖的步驟和方法進(jìn)行作圖即可.

解答 解:列表如下:

    2x-$\frac{π}{3}$0$\frac{π}{2}$ π$\frac{3π}{2}$ 2π
x$\frac{π}{6}$$\frac{5π}{12}$$\frac{2π}{3}$$\frac{11π}{12}$$\frac{7π}{6}$
 y=$\frac{1}{2}$sin(2x-$\frac{π}{3}$) 0$\frac{1}{2}$ 0-$\frac{1}{2}$ 0
描點(diǎn),連線,其圖象如下圖所示:

點(diǎn)評(píng) 本題重點(diǎn)考查了五點(diǎn)法作函數(shù)y=Asin(ωx+φ)的圖象,三角函數(shù)的圖象與性質(zhì),屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.設(shè)橢圓E1:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}=1$(a>b>0)的兩個(gè)頂點(diǎn)與兩個(gè)焦點(diǎn)構(gòu)成一個(gè)面積2的正方形,P是E1上的動(dòng)點(diǎn),橢圓E2:$\frac{{x}^{2}}{8}$+$\frac{{y}^{2}}{2}$=1.
(1)若橢圓E2上的點(diǎn)Q滿足:$\overrightarrow{OQ}$=λ$\overrightarrow{OP}$(λ>0),求λ的最大值;
(2)設(shè)E1在P處的切線為l,l與E2交于A,B兩點(diǎn),求三角形OAB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.直角梯形ABCD,AD⊥AB,DC∥AB,CD=2cm,AB=4cm,AD=4cm,則ABCD水平放置的直觀圖中△ACD的形狀是等腰三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.設(shè)△ABC中,$\overrightarrow{AB}$=$\overrightarrow{c}$,$\overrightarrow{BC}$=$\overrightarrow{a}$,$\overrightarrow{CA}$=$\overrightarrow$,且$\overrightarrow{a}$•$\overrightarrow$=$\overrightarrow$•$\overrightarrow{c}$=$\overrightarrow{c}$•$\overrightarrow{a}$.試判斷△ABC的形狀.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.“$\frac{|C|}{\sqrt{A^2+B^2}}$≤a”是“曲線Ax+By+C=0與$\frac{x^2}{a}$+$\frac{y^2}$=1(a>b>0)有公共點(diǎn)”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知定義在[3m-1,m]的函數(shù)f(x)=-mx2+(n+1)x,且f(x-2)是偶函數(shù),則(n-m)2=( 。
A.0B.$\frac{25}{16}$C.$\frac{121}{16}$D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.設(shè)偶函數(shù)f(x)在[0,+∞)上為增函數(shù),則不等式f(x)>f(2x十1)的解集為( 。
A.B.{x|x<-1或x>$\frac{1}{3}$}C.{x|x>1或x<$\frac{1}{3}$}D.{x|-1<x<-$\frac{1}{3}$}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知數(shù)列{an}滿足Sn=n-an
(1)求證:數(shù)列{an-1}是等比數(shù)列;
(2)求an

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.已知角α=$\frac{5π}{6}$,則,其終邊與單位圓交點(diǎn)的坐標(biāo)為(-$\frac{\sqrt{3}}{2}$,$\frac{1}{2}$).

查看答案和解析>>

同步練習(xí)冊(cè)答案