14.直線l:x+y-4=0與圓C:x2+y2+2x=0的位置關(guān)系為相離.

分析 把圓的方程化為標(biāo)準(zhǔn)方程后,找出圓心坐標(biāo)與圓的半徑r,然后利用點(diǎn)到直線的距離公式求出圓心到已知直線的距離d,然后比較d與r的大小即可得到直線與圓的位置關(guān)系,然后把圓心坐標(biāo)代入已知直線即可判斷已知直線是否過圓心.

解答 解:由圓C:x2+y2+2x=0化為標(biāo)準(zhǔn)方程得:(x+1)2+y2=1,
所以圓心坐標(biāo)為(-1,0),圓的半徑r=1,
則圓心到直線x+y-4=0的距離d=$\frac{5}{\sqrt{2}}$>r=1,所以直線與圓相離,
故答案為:相離.

點(diǎn)評 此題考查學(xué)生掌握判斷直線與圓位置關(guān)系的方法,靈活運(yùn)用點(diǎn)到直線的距離公式化簡求值,是一道綜合題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.給定平面上四點(diǎn)A,B,C,D,滿足AB=2,AC=4,AD=6,$\overrightarrow{AB}$•$\overrightarrow{AC}$=4,則△DBC面積的最大值為$8\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.某幾何體的三視圖如圖所示,則該幾何體的體積為$\frac{4\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知四棱錐P-ABCD,它的底面是邊長為a的菱形,且∠ABC=120°,PC⊥平面ABCD,又PC=a,E為PA的中點(diǎn).
(1)求證:平面EBD⊥平面ABCD;
(2)求點(diǎn)E到平面PBC的距離;
(3)求二面角A-BE-D的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知兩個大小相等的共點(diǎn)力F1,F(xiàn)2,當(dāng)他們的夾角為90°時,合力的大小為10N,則當(dāng)他們的夾角是120°時,合力大小是$5\sqrt{2}$N.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=$\frac{{a{x^2}}}{b+cx}$(a,b,c為常數(shù)),a,b分別是雙曲線x2-$\frac{y^2}{3}$=1的實(shí)半軸長、半焦距,且直線x-cy=2和直線y=x-3垂直.
(1)求函數(shù)f(x)的解析式;
(2)設(shè)k>1,解關(guān)于x的不等式f(x)<$\frac{{({k+1})x-k}}{2-x}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知函數(shù)f(x)是定義在非負(fù)實(shí)數(shù)集上的單調(diào)函數(shù)且$f(2\sqrt{3})<f(3\sqrt{2})$若f(2a2-1)>f(3-2a),則實(shí)數(shù)a的取值范圍{a|a<-2或 1<a≤$\frac{3}{2}$ }.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=x3-x.
(Ⅰ)求f(x)在區(qū)間[-2,0]上的最大值;
(Ⅱ)若過點(diǎn)P(2,t)存在3條直線與曲線y=f(x)相切,求t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知動圓M過點(diǎn)P(0,2),且在x軸上截得的弦AB的長為4.
(1)求動圓圓心M的軌跡C的方程;
(2)過點(diǎn)(-1,1)的直線l與軌跡C有且只有一個公共點(diǎn),求直線l的方程.

查看答案和解析>>

同步練習(xí)冊答案