1.在等差數(shù)列{an}中,公差d≠0,a1=7,且a2,a5,a10成等比數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式及其前n項(xiàng)和Sn;
(2)若${b_n}=\frac{5}{{{a_n}•{a_{n+1}}}}$,求數(shù)列{bn}的前n項(xiàng)和Tn

分析 (1)利用等差數(shù)列與等比數(shù)列的通項(xiàng)公式及其前n項(xiàng)和公式即可得出;
(2)利用“裂項(xiàng)求和”即可得出.

解答 解:(1)∵a2,a5,a10成等比數(shù)列,
∴(7+d)(7+9d)=(7+4d)2,
又∵d≠0,∴d=2,
∴${a_n}=2n+5,{S_n}=\frac{{({7+2n+5})n}}{2}={n^2}+6n$.   …(7分)
(2)由(1)可得${b_n}=\frac{5}{{({2n+5})•({2n+7})}}=\frac{5}{2}({\frac{1}{2n+5}-\frac{1}{2n+7}})$,
∴${T_n}=\frac{5}{2}({\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+…+\frac{1}{2n+5}-\frac{1}{2n+7}})=\frac{5n}{14n+49}$.  …(12分)

點(diǎn)評(píng) 本題考查了等差數(shù)列與等比數(shù)列的通項(xiàng)公式及其前n項(xiàng)和公式、“裂項(xiàng)求和”方法,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.已知cosα=$\frac{2}{3}$,α∈(0,$\frac{π}{2}$),那么sin$\frac{α}{2}$=$\frac{\sqrt{6}}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{6}}{3}$,焦距為2$\sqrt{2}$,過(guò)點(diǎn)D(1,0)直線l與橢圓C交于A,B兩點(diǎn).
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)當(dāng)直線l的斜率為-1時(shí),求|AB|;
(3)若直線l垂直于x軸,點(diǎn)E的坐標(biāo)為(2,1),直線AE與直線x=3交于點(diǎn)M,求直線BM的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知向量$\overrightarrow{a}$=$\overrightarrow{{e}_{1}}$-$\overrightarrow{{e}_{2}}$,$\overrightarrow$=4$\overrightarrow{{e}_{1}}$+3$\overrightarrow{{e}_{2}}$,其中$\overrightarrow{{e}_{1}}$=(1,0),$\overrightarrow{{e}_{2}}$=(0,1).
(Ⅰ)試計(jì)算$\overrightarrow{a}$•$\overrightarrow$及|$\overrightarrow{a}$+$\overrightarrow$|的值; 
(Ⅱ)求向量$\overrightarrow{a}$與$\overrightarrow$的夾角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.z=a+2i(a∈R),若z2+8i為純虛數(shù),則a=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.若方程$\sqrt{4x-{x^2}}=\frac{3}{4}x+m$有實(shí)數(shù)解,則m的取值范圍是[-3,1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.曲線C的方程:$\frac{x^2}{5-m}+\frac{y^2}{m-2}=1$
(1)當(dāng)m為何值時(shí),曲線C表示焦點(diǎn)在x軸上的橢圓?
(2)當(dāng)m為何值時(shí),曲線C表示雙曲線?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知向量$\overrightarrow a=(cosx-sinx,\sqrt{2})$,$\overrightarrow b=(cosx+sinx,-\sqrt{2})(x∈R)$,則函數(shù)$f(x)=\overrightarrow a•\overrightarrow b$是( 。
A.周期為π的偶函數(shù)B.周期為π的奇函數(shù)
C.周期為$\frac{π}{2}$的偶函數(shù)D.周期為$\frac{π}{2}$的奇函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.如圖,正方體AC1的棱長(zhǎng)為1,過(guò)點(diǎn)A作平面A1BD的垂線,垂足為點(diǎn)H,以下四個(gè)命題:
①點(diǎn)H是△A1BD的垂心;
②AH垂直平面CB1D1
③直線AH和BB1所成角為45°;
④AH的延長(zhǎng)線經(jīng)過(guò)點(diǎn)C1
其中假命題的個(gè)數(shù)為( 。
A.0B.1C.2D.3

查看答案和解析>>

同步練習(xí)冊(cè)答案