6.求函數(shù)y=$\frac{3x-1}{x+1}$(0≤x≤1)的最大值和最小值.

分析 將函數(shù)y變形為y=3-$\frac{4}{x+1}$,可得在[0,1]遞增,即可得到最值.

解答 解:函數(shù)y=$\frac{3x-1}{x+1}$=3-$\frac{4}{x+1}$在[0,1]遞增,
即有x=0處取得最小值,且為-1;
x=1處取得最大值,且為1.

點(diǎn)評(píng) 本題考查分式函數(shù)的最值的求法,考查單調(diào)性的運(yùn)用,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知數(shù)列{xn},{yn}滿足$\underset{lim}{n→∞}$(2xn+yn)=1,$\underset{lim}{n→∞}$(xn-2yn)=1,求$\underset{lim}{n→∞}$(xnyn)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知圓C:x2+(y-1)2=5,直線1過定點(diǎn)P(1,1).
(1)求圓心C到直線1距離最大時(shí)的直線1的方程;
(2)若1與圓C交與不同兩點(diǎn)A、B,求弦AB的中點(diǎn)M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.下列說法錯(cuò)誤的是( 。
A.多面體至少有四個(gè)面
B.九棱柱有9條側(cè)棱,9個(gè)側(cè)面,側(cè)面為平行四邊形
C.長方體、正方體都是棱柱
D.三棱柱的側(cè)面為三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知向量$\overrightarrow{a}$=(1,2),$\overrightarrow$=(-1,0),若(λ$\overrightarrow{a}$+$\overrightarrow$)⊥$\overrightarrow$,則實(shí)數(shù)λ的值為( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知sinx+sin($\frac{3π}{2}$+x)=$\sqrt{2}$,求tanx+$\frac{1}{tan(π+x)}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.桌面上有大小兩顆球,相互靠在一起.已知大球的半徑為9cm,小球半徑4cm,則這兩顆球分別與桌面相接觸的兩點(diǎn)之間的距離等于12 cm.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知圖中陰影部分的面積為正整n,則二項(xiàng)式(x-$\frac{2}{\sqrt{x}}$)n 的展開式中的常數(shù)項(xiàng)為( 。
A.240B.一240C.60D.一60

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=x2-2ax+1在區(qū)間[-3,2]上有最小值,記作g(a)
(Ⅰ)求g(a)的函數(shù)表達(dá)式;
(Ⅱ)求g(a)的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案