7.已知角A是△ABC的內(nèi)角,cosA=$\frac{1}{2}$,則角A=$\frac{π}{3}$.

分析 根據(jù)A為三角形的內(nèi)角,利用特殊角的三角函數(shù),即可得出結(jié)論.

解答 解:∵角A是△ABC的內(nèi)角,cosA=$\frac{1}{2}$,
∴A=$\frac{π}{3}$.
故答案為:$\frac{π}{3}$.

點(diǎn)評(píng) 此題考查了特殊角的三角函數(shù)的運(yùn)用,比較基礎(chǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.下列有關(guān)命題的說(shuō)法正確的是( 。
A.若x2=1,則x=1為真命題.
B.語(yǔ)句x2-2x+3>0不是命題
C.命題“若x2=1,則x=1”的否命題為:“若x2=1,則x≠1”
D.命題“若x=y,則sinx=siny”的逆否命題為真命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.若一系列函數(shù)的解析式相同,值域相同,但定義域不相同,則稱這些函數(shù)為“孿生函數(shù)”.例如解析式為y=2x2+1,值域?yàn)閧9}的“孿生函數(shù)”有3個(gè):
(1)y=2x2+1,x∈{-2};(2)y=2x2+1,x∈{2};(3)y=2x2+1,x∈{-2,2}.
那么函數(shù)解析式為y=2x2+1,值域?yàn)閧1,5}的“孿生函數(shù)”有3個(gè).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.若數(shù)列{an}中,an=3n-12
(1)求數(shù)列{an}的前n項(xiàng)的和Sn
(2)求數(shù)列{|an|}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.$已知z為復(fù)數(shù),\frac{z}{1-i}=3+i,則|z|$=( 。
A.$2\sqrt{5}$B.$5\sqrt{2}$C.5D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.雙曲線$\frac{x^2}{4}-\frac{y^2}{m}=1$的虛軸長(zhǎng)是實(shí)軸長(zhǎng)的2倍,則m的值=16.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.棱長(zhǎng)為1的正方體ABCD-A1B1C1D1中,點(diǎn)P在平面ABCD上,滿足PC1=3PA,則點(diǎn)P的軌跡為( 。
A.直線B.一段圓弧C.橢圓D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知圓C過(guò)點(diǎn)P($\sqrt{2}$,0)且與圓M:(x+4)2+(y+4)2=r2(r>0)關(guān)于直線x+y+4=0對(duì)稱,定點(diǎn)R的坐標(biāo)為(1,-1)
(1)求圓C的方程;
(2)設(shè)Q為圓上的一個(gè)動(dòng)點(diǎn),求$\overrightarrow{PQ}$•$\overrightarrow{MQ}$的最小值;
(3)過(guò)點(diǎn)P作兩條相異直線分別與圓C相交于A、B,且直線PA和直線PB的傾斜角互補(bǔ),O為坐標(biāo)原點(diǎn),試判斷直線OP和直線AB是否平行,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.下列四個(gè)命題中,真命題的個(gè)數(shù)是( 。
①“x=1”是“x2-3x+2=0”的充分不必要條件
②命題“?x∈R,sinx≤1”的否定是“?x0∈R,sinx0>1”
③命題p:?x∈[1,+∞),lgx≥0,命題$q:?{x_0}∈R,{x_0}^2+{x_0}+1<0$,p∨q 為真命題.
A.0B.1C.2D.3

查看答案和解析>>

同步練習(xí)冊(cè)答案