15.說(shuō)出下列各符號(hào)所表示的關(guān)系:
(1)p∈平面AC;
(2)A∈平面α,B∈平面α;
(3)a⊆平面α;
(4)平面α∩平面β=AB.

分析 利用點(diǎn)、線、面之間的位置關(guān)系,即可得出結(jié)論.

解答 解:(1)P∈平面AC,表示P在平面AC內(nèi);
(2)A∈平面α,B∈平面α,表示點(diǎn)A,B在平面α內(nèi);
(3)a⊆平面α,表示直線a在平面α內(nèi);
(4)平面α∩平面β=AB,表示平面α與平面β相交于AB.

點(diǎn)評(píng) 本題考查點(diǎn)、線、面之間的位置關(guān)系,比較基礎(chǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.正方體ABCD-A1B1C1D1的棱長(zhǎng)為3,則以A為球心,2$\sqrt{3}$為半徑的球被正方體的各面所截得的弧長(zhǎng)之和為$\frac{5\sqrt{3}}{2}$π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知實(shí)數(shù)x、y滿足$\left\{\begin{array}{l}{4x+y-9≥0}\\{x-y-1≤0}\\{y≤3}\end{array}\right.$,若x-ky的最大值是-1,則正數(shù)k的值為( 。
A.3B.$\frac{5}{3}$C.3或$\frac{5}{3}$D.3或$\frac{5}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.設(shè)定義在(0,+∞)上的單調(diào)函數(shù)f(x)對(duì)任意的x∈(0,+∞)都有f(f(x)-log2x)=6,則不等式f(a2+a)>5的解集為( 。
A.{a|a>1}B.{a|a<-2或a>1}C.{a|-2<a<1}D.{a|a<-2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.設(shè)集合A={x|x2-2x-3<0},集合B=Z(Z為整數(shù)集),則A∩B中的元素的個(gè)數(shù)為(  )
A.4B.3C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知函數(shù)h(x)=-2ax+lnx.
(1)當(dāng)a=1時(shí),求h(x)在(2,h(2))處的切線方程;
(2)令f(x)=$\frac{a}{2}$x2+h(x)已知函數(shù)f(x)有兩個(gè)極值點(diǎn)x1,x2,且x1•x2>$\frac{1}{2}$,求實(shí)數(shù)a的取值范圍;
(3)在(2)的條件下,若存在x0∈[1+$\frac{\sqrt{2}}{2}$,2],使不等式f(x0)+ln(a+1)>m(a2-1)-(a+1)+2ln2對(duì)任意a(取值范圍內(nèi)的值)恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知{an}是公差不為零的等差數(shù)列,a1=$\frac{1}{4}$,且a1,a2,a4成等比數(shù)列.求:
(1)數(shù)列{an}的通項(xiàng)公式;
(2)求數(shù)列$\left\{{\frac{1}{{{a_n}•{a_{n+1}}}}}\right\}$的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.在等差數(shù)列{an}中,a3+a9=12,則數(shù)列{an}的前11項(xiàng)和S11等于66.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.設(shè)函數(shù)f(x)=ax2+bx+1(a≠0、b∈R),若f(-1)=0,且對(duì)任意實(shí)數(shù)x(x∈R)不等式f(x)≥0恒成立.
(1)求實(shí)數(shù)a、b的值;
(2)當(dāng)x∈[-2,2]時(shí),g(x)=f(x)-kx是單調(diào)函數(shù),求實(shí)數(shù)k的取值范圍.
(3)求f(x)在x∈[t,t+2]的最大值h(t).

查看答案和解析>>

同步練習(xí)冊(cè)答案