13.已知△ABC的內(nèi)角A,B,C所對的邊分別為a,b,c,若(3b-c)cosA=acosC,${S_△}_{ABC}=\sqrt{2}$,則$\overrightarrow{BA}•\overrightarrow{AC}$=( 。
A.$\sqrt{2}$B.2C.1D.-1

分析 先利用正弦定理及和角的三角函數(shù),可求cosA的值,進而可求sinA,利用三角形的面積,求得bc.利用向量的數(shù)量積公式,即可得到結(jié)論.

解答 解:∵(3b-c)cosA=acosC,
∴由正弦定理,可得:3sinBcosA-sinCcosA=sinAcosC,
∴3sinBcosA=sinAcosC+sinCcosA,
∴3sinBcosA=sin(A+C)=sinB,
∴cosA=$\frac{1}{3}$,sinA=$\frac{2\sqrt{2}}{3}$,
∵S△ABC=$\sqrt{2}$,
∴$\frac{1}{2}$bcsinA=$\frac{\sqrt{2}}{3}$bc=$\sqrt{2}$,
∴bc=3,
∵cosA=$\frac{1}{3}$,
∴cos<$\overrightarrow{BA}$,$\overrightarrow{AC}$>=-$\frac{1}{3}$,
∴$\overrightarrow{BA}•\overrightarrow{AC}$=bccos<$\overrightarrow{BA}$,$\overrightarrow{AC}$>=-1.
故選:D.

點評 本題考查正弦定理,考查三角形的面積公式,解題的關(guān)鍵是利用正弦定理,進行邊角互化,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.某租賃公司擁有汽車100輛.當(dāng)每輛車的月租金為3000元時,可全部租出,當(dāng)每輛車的月租金每增加50元時,未租出的車將會增加一輛,租出的車每輛每月需要維護費150元,未租出的車每輛每月需要維護費50元.,當(dāng)每輛車的月租金定為x元時,租賃公司的月收益為y元,
(1)試寫出x,y的函數(shù)關(guān)系式(不要求寫出定義域);
(2)租賃公司某月租出了88輛車,求租賃公司的月收益多少元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.若實數(shù)x,y滿足$\left\{\begin{array}{l}2x-y-2≤0\\ x+y-1≥0\\ x-y+1≥0\end{array}\right.$,則z=2x-y的最小值為-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.下列等式一定成立的是( 。
A.a${\;}^{-\frac{1}{2}}$•a${\;}^{\frac{1}{2}}$=0B.a${\;}^{\frac{1}{2}}$÷a${\;}^{\frac{1}{3}}$=a${\;}^{\frac{5}{6}}$
C.(a32=a9D.a${\;}^{\frac{1}{2}}$•a${\;}^{\frac{1}{2}}$=a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知關(guān)于x的方程${({\frac{3}{2}})^x}=\frac{2+3a}{5-a}$有非負(fù)根,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.下列命題中,正確的是( 。
A.存在x0>0,使得x0<sinx0
B.“l(fā)na>lnb”是“10a>10b”的充要條件
C.若sinα≠$\frac{1}{2}$,則α≠$\frac{π}{6}$
D.若函數(shù)f(x)=x3+3ax2+bx+a2在x=-1有極值0,則a=2,b=9或a=1,b=3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知斜三棱柱ABC-A1B1C1中,∠BAC=$\frac{π}{2}$,∠BAA1=$\frac{2π}{3}$,∠CAA1=$\frac{π}{3}$,AB=AC=1,AA1=2,點O是B1C與BC1的交點.
(1)求AO的距離;
(2)求異面直線AO與BC所成的角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知全集U={1,2,3,4,5,6},A={1,2,5},B={2,3,4},則A∩(∁UB)=( 。
A.{2,6}B.{1,5}C.{1,6}D.{5,6}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.如圖,過雙曲線上左支一點A作兩條相互垂直的直線分別過兩焦點,其中一條與雙曲線交于點B,若($\overrightarrow{AB}$+$\overrightarrow{A{F}_{2}}$)•$\overrightarrow{B{F}_{2}}$=0,則雙曲線的離心率為(  )
A.$\sqrt{5+2\sqrt{2}}$B.$\sqrt{5-2\sqrt{2}}$C.$\sqrt{4+2\sqrt{2}}$D.$\sqrt{4-2\sqrt{2}}$

查看答案和解析>>

同步練習(xí)冊答案