10.對任意x∈[-1,1],不等式-4≤x3+3|x-a|≤4恒成立,則實(shí)數(shù)a的取值范圍為( 。
A.[-$\frac{2}{3}$,$\frac{2}{3}$]B.[-$\frac{1}{3}$,$\frac{1}{3}$]C.[0,$\frac{2}{3}$]D.[0,1]

分析 由題意可得y=|x-a|的圖象(紅色部分)應(yīng)在y=-$\frac{{x}^{2}}{3}$-$\frac{4}{3}$的圖象和y=-$\frac{{x}^{3}}{3}$+$\frac{4}{3}$的圖象之間,數(shù)形結(jié)合可得f(-1)≤$\frac{1}{3}$+$\frac{4}{3}$,且f(1)≤-$\frac{1}{3}$+$\frac{4}{3}$,由此求得a的范圍.

解答 解:由題意可得$\left\{\begin{array}{l}{|x-a|≥-\frac{{x}^{3}}{3}-\frac{4}{3}}\\{|x-a|≤\frac{4}{3}-\frac{{x}^{3}}{3}}\end{array}\right.$,即當(dāng)x∈[-1,1]時(shí),
y=|x-a|的圖象應(yīng)在y=-$\frac{{x}^{2}}{3}$-$\frac{4}{3}$的圖象和y=-$\frac{{x}^{3}}{3}$+$\frac{4}{3}$的圖象之間.
當(dāng)x∈[-1,1]時(shí),y=f(x)=|x-a|的圖象在y=-$\frac{{x}^{3}}{3}$-$\frac{4}{3}$的上方,顯然成立,
故只要當(dāng)x∈[-1,1]時(shí),y=f(x)=|x-a|的圖象在y=-$\frac{{x}^{3}}{3}$+$\frac{4}{3}$的下方,或在y=-$\frac{{x}^{3}}{3}$+$\frac{4}{3}$上,
故有f(-1)=|1+a|≤$\frac{1}{3}$+$\frac{4}{3}$,且f(1)=|1-a|≤-$\frac{1}{3}$+$\frac{4}{3}$,
即|a+1|≤$\frac{5}{3}$,且|a-1|≤1,
求得0≤a≤$\frac{2}{3}$.
故選:C.

點(diǎn)評 本題主要考查絕對值不等式的解法,體現(xiàn)了轉(zhuǎn)化、數(shù)形結(jié)合的數(shù)學(xué)思想,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知橢圓的中心在原點(diǎn),兩焦點(diǎn)F1,F(xiàn)2在x軸上,且過點(diǎn)A(-4,3).
(1)若F1A⊥F2A,求橢圓的標(biāo)準(zhǔn)方程.
(2)在(1)的條件下,若點(diǎn)P為橢圓上一點(diǎn),且滿足∠F1PF2=120°,求△PF1F2的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.下列函數(shù)在區(qū)間(0,+∞)上是減函數(shù)的是( 。
A.f(x)=3x-2B.f(x)=9-x2C.$f(x)=\frac{1}{x-1}$D.f(x)=log2x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.設(shè)直線y=t與曲線C:y=x(x-3)2的三個(gè)交點(diǎn)分別為A(a,t),B(b,t),C(c,t),且a<b<c.現(xiàn)給出如下結(jié)論:
①abc的取值范圍是(0,4);
②a2+b2+c2為定值;
③c-a有最小值無最大值.
其中正確結(jié)論的個(gè)數(shù)為( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知圓O:x2+y2=r2(r>0)與y軸的正半軸交于點(diǎn)M,直線l1:y=2x+1被圓O所截得的弦長為$\frac{4\sqrt{5}}{5}$,圓O上相異兩動(dòng)點(diǎn)A,B所在的直線l2的方程為y=kx+m,且滿足直線MA與直線MB的斜率之積為$\frac{\sqrt{3}}{3}$.
(Ⅰ)求實(shí)數(shù)r的值;
(Ⅱ)試探究直線AB是否經(jīng)過定點(diǎn),若經(jīng)過,請求定點(diǎn)的坐標(biāo);若不經(jīng)過,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知x,y滿足$\left\{\begin{array}{l}x+2y-4≤0\\ x-y-1≤0\\ x≥1\end{array}\right.$若ax+y≥1恒成立,則實(shí)數(shù)a的取值范圍是( 。
A.$a≥-\frac{1}{2}$B.$a≥\frac{1}{2}$C.a≥1D.$-\frac{1}{2}≤a≤1$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.下列各式的大小關(guān)系正確的是( 。
A.sin11°>sin168°B.sin194°<cos160°
C.cos(-$\frac{15π}{8}$)>cos$\frac{14π}{9}$D.tan(-$\frac{π}{5}$)<tan(-$\frac{3π}{7}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=x2+2ax+2,x∈[-5,5].
(Ⅰ)當(dāng)a=-1時(shí),求函數(shù)f(x)的最大值和最小值;
(Ⅱ)求實(shí)數(shù)a的取值范圍,使y=f(x)在區(qū)間[-5,5]上是單調(diào)函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知α、β是兩個(gè)平面,m、n是兩條直線,則下列命題不正確的是( 。
A.若m∥n,m⊥α,則n⊥αB.若m⊥α,m⊥β,則α∥β
C.若m⊥α,m?β,則α⊥βD.若m⊥α,α∩β=n,則m∥n

查看答案和解析>>

同步練習(xí)冊答案