8.若將函數(shù)f(x)=x6表示為f(x)=a0+a1(1+x)+a2(1+x)2+…a6(1+x)6,其中a0,a1,a2,…,a6為實(shí)數(shù),則a3等于 ( 。
A.20B.15C.-15D.-20

分析 把函數(shù)f(x)=x6 =[-1+(1+x)]6 按照二項(xiàng)式定理展開,結(jié)合已知條件,求得a3的值.

解答 解:∵函數(shù)f(x)=x6 =[-1+(1+x)]6=1-${C}_{6}^{1}$•(1+x)+${C}_{6}^{2}$•(1+x)2-${C}_{6}^{3}$•(1+x)3+…+${C}_{6}^{6}$•(1+x)6,
又f(x)=a0+a1(1+x)+a2(1+x)2+…a6(1+x)6,其中a0,a1,a2,…,a6為實(shí)數(shù),
則a3=-${C}_{6}^{3}$=-20,
故選:D.

點(diǎn)評 本題主要考查二項(xiàng)式定理的應(yīng)用,二項(xiàng)展開式的通項(xiàng)公式,求展開式中某項(xiàng)的系數(shù),屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.下列各式中最小值為2的是( 。
A.$\frac{{x}^{2}+5}{\sqrt{{x}^{2}+4}}$B.$\frac{a}$+$\frac{a}$C.$\frac{a+b+2\sqrt{ab}+1}{\sqrt{a}+\sqrt}$D.sinx+$\frac{1}{sinx}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知斜三棱柱ABC-A1B1C1的體積為V,在斜三棱柱內(nèi)任取一點(diǎn)P,則三棱錐P-ABC的體積大于$\frac{V}{5}$的概率為( 。
A.$\frac{1}{5}$B.$\frac{2}{5}$C.$\frac{3}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.設(shè)a=($\frac{4}{5}$)x,b=($\frac{5}{4}$)x-1,c=log${\;}_{\frac{1}{2}}$x,若x>1,則a,b,c的大小關(guān)系為c<a<b.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.下列函數(shù)中,在定義域上為增函數(shù)的是( 。
A.y=|x|B.$y=x-\frac{1}{x}$C.y=ex-1D.y=tanx

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.下列函數(shù)中,不是奇函數(shù)的是( 。
A.y=1-x2B.y=tanxC.y=sin2xD.y=5x-5-x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=kx2+(2k-1)x+k,g(x)=log2(x+k)(k∈R)
(1)若f(0)=7,求函數(shù)g(x)在區(qū)間[9,+∞)上的最小值m;
(2)若0<g(1)≤5,函數(shù)f(x)在區(qū)間[0,2]上的最小值不小于(1)中的m,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.設(shè)z1=1+i,復(fù)數(shù)z1,z2在復(fù)平面內(nèi)的對應(yīng)點(diǎn)關(guān)于實(shí)軸對稱,則$\frac{z_1}{z_2}$=( 。
A.iB.-iC.-1D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.試驗(yàn)中將兩種基因冷凍保存,若兩種基因各保存2個.在保存過程中有兩個基因失效,則恰有一種基因兩個都失效的概率為(  )
A.$\frac{1}{6}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{2}{3}$

查看答案和解析>>

同步練習(xí)冊答案