分析 (Ⅰ)由題意可得a=2,c=1,由a,b,c的關系可得b,進而得到橢圓方程;
(Ⅱ)設直線AE的方程為y=k(x-2),代入橢圓方程,運用韋達定理,可得E的坐標,由兩直線垂直可得F的坐標,再由直線的斜率公式,結合基本不等式即可得到斜率的最值,進而得到所求范圍.
解答 解:(Ⅰ)由題意可得a=2,2c=2,即c=1,
b=$\sqrt{{a}^{2}-{c}^{2}}$=$\sqrt{3}$,
則橢圓的標準方程為$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1;
(Ⅱ)設直線AE的方程為y=k(x-2),
代入橢圓方程,可得(3+4k2)x2-16k2x+16k2-12=0,
由2+xE=$\frac{16{k}^{2}}{3+4{k}^{2}}$,可得xE=$\frac{8{k}^{2}-6}{3+4{k}^{2}}$,
yE=k(xE-2)=$\frac{-12k}{3+4{k}^{2}}$,
由于AE⊥AF,只要將上式的k換為-$\frac{1}{k}$,
可得xF=$\frac{8-6{k}^{2}}{4+3{k}^{2}}$,yF=$\frac{12k}{4+3{k}^{2}}$,
由2$\overrightarrow{OP}$=$\overrightarrow{OE}$+$\overrightarrow{OF}$,可得P為EF的中點,
即有P($\frac{14{k}^{2}}{(4+3{k}^{2})(3+4{k}^{2})}$,$\frac{6k({k}^{2}-1)}{(4+3{k}^{2})(3+4{k}^{2})}$),
則直線AP的斜率為t=$\frac{{y}_{P}}{{x}_{P}-2}$=$\frac{k(1-{k}^{2})}{4{k}^{4}+4+6{k}^{2}}$,
當k=0時,t=0;
當k≠0時,t=$\frac{\frac{1}{k}-k}{4({k}^{2}+\frac{1}{{k}^{2}})+6}$,
再令s=$\frac{1}{k}$-k,可得t=$\frac{s}{4{s}^{2}+14}$,
當s=0時,t=0;當s>0時,t=$\frac{1}{4s+\frac{14}{s}}$≤$\frac{1}{2\sqrt{56}}$=$\frac{\sqrt{14}}{56}$,
當且僅當4s=$\frac{14}{s}$時,取得最大值;
當s<0時,t=$\frac{1}{-(-4s+\frac{14}{-s})}$≥-$\frac{\sqrt{14}}{56}$,
綜上可得直線AP的斜率的取值范圍是[-$\frac{\sqrt{14}}{56}$,$\frac{\sqrt{14}}{56}$].
點評 本題考查橢圓的方程的求法,考查直線和橢圓方程聯(lián)立,運用韋達定理,考查直線的斜率的取值范圍的求法,注意運用基本不等式,考查運算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 當a>0時,函數(shù)F(x)有2個零點 | B. | 當a>0時,函數(shù)F(x)有4個零點 | ||
C. | 當a<0時,函數(shù)F(x)有2個零點 | D. | 當a<0時,函數(shù)F(x)有3個零點 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -$\frac{3}{5}$ | B. | -$\frac{5}{3}$ | C. | $\frac{5}{3}$ | D. | $\frac{3}{5}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 充要條件 | B. | 必要不充分條件 | ||
C. | 充分不必要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com